Company	Infrastructure	Name of branch	Equipment	Unit	Quantity
1	2	3	4	5	6
Tsentrenergo	Generation	Zmiivska TPP	Generator TГB 200 M	pcs.	2
Tsentrenergo	Generation	Zmiivska TPP	Autotype transformer АТДЦТН-200000/330/110-74У	pcs.	3
Tsentrenergo	Generation	Zmiivska TPP	Transformer [circuit-breaker] fluid Shell Diala S4 ZX-1	t	200
Tsentrenergo	Generation	Zmiivska TPP	Current transformer 110 kV	pcs.	6
Tsentrenergo	Generation	Zmiivska TPP	Circuit breaker 110kV type LTD-145D1/B	pcs.	3
Tsentrenergo	Generation	Zmiivska TPP	Current transformer 330 kV TOM-362 II U- 0,2S/0,2S/0,2S/5P/5P/5P-1000-2000/1 Y1	pcs.	4
Tsentrenergo	Generation	Zmiivska TPP	Overvoltage suppressor 330 kW PEXLIM P 276-XH 362, Set of 3 phases	pcs.	1
Tsentrenergo	Generation	Zmiivska TPP	shut-off and regulating valves of high and medium pressure in an assortment for boiler	set	1
Tsentrenergo	Generation	Zmiivska TPP	Cable products	m	50000
Tsentrenergo	Generation	Zmiivska TPP	Generator TΓB-200	pcs	2
Tsentrenergo	Generation	Zmiivska TPP	Transformer bushing 110 kV	pcs	3
Tsentrenergo	Generation	Zmiivska TPP	Electric motor 1500 rpm, 200 kW	pcs	2
Tsentrenergo	Generation	Zmiivska TPP	Electric motor 1500 rpm, 160 kW	pcs	2

Tsentrenergo	Generation	Zmiivska TPP	Electric motor 1500 rpm, 21 kW	pcs	2
Tsentrenergo	Generation	Zmiivska TPP	Electric motor 1500 rpm, 11 kW	pcs	3
Tsentrenergo	Generation	Zmiivska TPP	Electric motor 750 rpm, 28 kW	pcs	2
Tsentrenergo	Generation	Zmiivska TPP	Electric motor 2985 rpm, 4000 kW	pcs	1
Tsentrenergo	Generation	Zmiivska TPP	Electric motor 2985 rpm, 3800 kW	pcs	2
Tsentrenergo	Generation	Zmiivska TPP	Electric motor 1500 rpm, 18,51 kW	pcs	6
Tsentrenergo	Generation	Zmiivska TPP	Electric motor 1500 rpm, 20 kW	pcs	2
Tsentrenergo	Generation	Zmiivska TPP	Electric motor 375 rpm, 1700 kW	pcs	1
Tsentrenergo	Generation	Trypilska TPP	Generator TFB-300	pcs	1
Tsentrenergo	Generation	Trypilska TPP	Brush ring apparatus	pcs	4
Tsentrenergo	Generation	Trypilska TPP	Cable products	m	80000
Tsentrenergo	Generation	Trypilska TPP	Block transformer ТДЦ-400000/330	pcs	2
Tsentrenergo	Generation	Trypilska TPP	Transformer for own needs ТРДНС-32000/20/6/6	pcs	1
Tsentrenergo	Generation	Trypilska TPP	Autotype transformer ATДЦТH-125000/330/110-77У1 330kW	pcs	1
Tsentrenergo	Generation	Trypilska TPP	Transformer oil	t	200
Tsentrenergo	Generation	Trypilska TPP	Oil TP-22s	t	300
Tsentrenergo	Generation	Trypilska TPP	shut-off and regulating valves of high and medium pressure in an assortment for boiler	set	1
Tsentrenergo	Generation	Trypilska TPP	Turbine section covering	m2	21600
Tsentrenergo	Generation	Trypilska TPP	corrugated board for closing window openings permanent, temporary ends rows A, Б, Β, Γ	m2	5300

Tsentrenergo	Generation	Trypilska TPP	Feeding electric pump unit ΠΕ 600-300	pcs	2
Tsentrenergo	Generation	Trypilska TPP	Generator TFB-300	pcs	2
Tsentrenergo	Generation	Trypilska TPP	Turbocharger pump unit OCПТ-1150	pcs	2
Tsentrenergo	Generation	Trypilska TPP	Turbine oil pump	pcs	4
Tsentrenergo	Generation	Trypilska TPP	Emergency turbine oil pump	pcs	4
Tsentrenergo	Generation	Trypilska TPP	Increased turbine oil pump	pcs	4
Tsentrenergo	Generation	Trypilska TPP	Emergency oil pump, reinforced turbineт	pcs	2
Tsentrenergo	Generation	Trypilska TPP	Trypilska TPP Gas cooling pump p		4
Tsentrenergo	Generation	Trypilska TPP	Brush ring apparatus	pcs	2
KHARKIV CHPP-5	СНР	Unit 3	Electric pump unit type D1600-90. Pumps: NTV- 3A; NTV-3B	pcs	1
KHARKIV CHPP-5	СНР	Unit 1,2	Main ejector of turbine generators TG-1, 2 of type EP-3-2A	pcs	2
KHARKIV CHPP-5	СНР	Unit 3	Gate valve DN800, Pu25	pcs	3
KHARKIV CHPP-5	СНР	Unit 2	Набір для відновлення системи автоматичного керування турбіни Т-110/120-	встанови ти	1
KHARKIV CHPP-5	СНР	Unit 1,2,3	Technological videographic recorders.	pcs	23
KHARKIV CHPP-5	СНР	Unit 2	Привід електричний однообертовий МЕО250/25-0,25У-99К з механічним гальмом	шт	1
KHARKIV CHPP-5	СНР	Unit 2	Braun E1623.11D U2 M measuring rotation speed converter with indication for VOITH	pcs	2
KHARKIV CHPP-5	СНР	Unit 2	Contrac RHD 250-10/EBN 853 electric control lever actuator for VOITH hydraulic coupling	pcs	1
KHARKIV CHPP-5	СНР	Unit 2	Automatic gas analysers of hydrogen purity	set	3
KHARKIV CHPP-5	СНР	Unit 2	A set of spare parts and materials for the restoration of local control panels	set	1

KHARKIV CHPP-5	СНР	Unit 2	A device for continuous measurement of hydrogen ion activity (pH) and temperature	set	1
KHARKIV CHPP-5	СНР	Unit 1,2	Gas-insulated circuit breaker 110kV 3 phases. Type LTB145D1/B	pcs	2
KHARKIV CHPP-5	СНР	Unit 1	Current transformer 110kV Type IMB 123	pcs	3
KHARKIV CHPP-5	СНР	Unit 1	Transformer oil NYTRO GX11	t	10
KHARKIV CHPP-5	СНР	Unit 1,2	Current conductor type TZMEP-10 (6) -3200	m	300
KHARKIV CHPP-5	СНР	Unit 2	Thyristor excitation system for turbine generators type SVTG-2k/300-C2T2.5-AR24-	pcs	1
KHARKIV CHPP-5	СНР	Unit 2	Generator current lead type 10.5kV. TEKN 20/1600	m	90
KHARKIV CHPP-5	СНР	Unit 2	Generator current lead type 10.5 kV. TEKN 20/8000 complete with measuring	m	55
KHARKIV CHPP-5	СНР	Unit 2	Set of measuring transformers adapted to the generator current lead type IPB-AI-E-15, 75-	set	1
KHARKIV CHPP-5	СНР	Unit 2	Voltage limiter type PEXLIM R108-YV123	pcs	3
KHARKIV CHPP-5	СНР	Unit 1 ,2	Suspended, tensioned insulation and busbar of 110kV	pcs	1
KHARKIV CHPP-5	СНР	Unit 2	Disconnector 110kV, Type SDF 145/1600, 3 phases, one earthing knife	pcs	1
KHARKIV CHPP-5	СНР	Unit 1 ,2	Disconnector 110kV, Type NSA 145/1600, 3 phases, two earthing knives	pcs	2
KHARKIV CHPP-5	СНР	Unit 3	Busbar ShZK-1,2-4000-81UZ RV-2	m	57
KHARKIV CHPP-5	СНР	Unit 2	Electric rope hoist 3.2t/12m	pcs	1
KHARKIV CHPP-5	СНР	Unit 2	Materials for the restoration of the main building.	set	1
KHARKIV CHPP-5	СНР	Unit 2	Metal structures to restore the roof of the main building (3 blocks, according to the project	set	1
KHARKIV CHPP-5	СНР	Unit 2	Мікропроцесорний прилад інформаційно- діагностичний комплекс "Регіна" 2ХТ	шт	1
KHARKIV CHPP-5	СНР	Unit 2	Сигнальний кабель HELUKABEL TOPGEBER 511 PVC 4x2x0.34 + 4x0.5 QMM/ C E170315	М	40

KHARKIV CHPP-5	СНР	Unit 2	Сигнальний кабель HELUKABEL TOPGEBER 511 PVC 4x2x0.34 + 4x0.5 QMM/ C E170315	_ M	80
KHARKIV CHPP-5	СНР	Unit 2	Силовий кабель HELUKABEL TOPFLEX 600-C- PVC 4G1.5 QMM / 22960 0.6/1kV з роз'ємами	м	40
KHARKIV CHPP-5	СНР	Unit 2	Силовий кабель HELUKABEL TOPFLEX 600-C- PVC 4G1.5 QMM / 22960 0.6/1kV з роз'ємами	м	80
KHARKIV CHPP-5	СНР	Unit 2	Датчик положення серводвигуна LVTD SL300- G-SR-11111 від eddylab GmbH	шт	3
KHARKIV CHPP-5	СНР	Unit 2	Силові кабелі та муфти	встанови ти	1
KHARKIV CHPP-5	СНР	Unit 2	Комплект перетворювачів тиску, перепаду тиску та витрати для відновлення	комплект	1
KHARKIV CHPP-5	СНР	Unit 2	Комплект для вимірювання вібрації турбіни Т 110/120-130-4:	комплект	1
KHARKIV CHPP-5	СНР	Unit 2	Елегазовий вимикач типу GL-312 F1/4031	шт	1
KHARKIV CHPP-5	СНР	Unit 2	Трансформатор струму типу ТФЗМ -123 II-IV U1	шт	3
DTEK	Generation	Burshtyn TPP	Power unit transformer 250 MVA 220 kV / 15.75 kV	pcs	2
DTEK	Generation	Burshtyn TPP	Power unit transformer 250 MVA 330 kV / 15.75 kV	pcs	1
DTEK	Transmission	Burshtyn TPP	Autotransformer 240 MVA / 330 kV / 220 kV / Yauto/d-11	pcs	1
DTEK	Transmission	Burshtyn TPP	Autotransformer 210 MVA / 400 kV / 330 kV / Yauto/d-11	pcs	3
DTEK	Transmission	Burshtyn TPP	Autotransformer 133 MVA / 400 kV / 220 kV / Yauto/d-11	pcs	1
DTEK	Transmission	Kryvoryzka TPP	Autotransformer 250 MVA / 330 kV / 150 kV	pcs	1
DTEK	Generation	Kryvoryzka TPP	Power unit transformer 400 MVA /154 kV / 20 kV	pcs	1
DTEK	Generation	Ladyzhyn TPP	Power unit control system + TCS + turbine excitation system	pcs	2
DTEK	Generation	Pridnyprovska TPP	Power unit transformer 250 MVA / 150 kV / 18 kV	pcs	1
DTEK	Transmission	Pridnyprovska TPP	Autotransformer 400 MVA / 330 kV / 150 kV	pcs	2

DTEK	Generation	Burshtyn TPP	Auxiliary transformer 25/32 MVA	pcs	4
DTEK	Generation	Dobrotvir TPP	Power unit transformer 200 MVA / 220 kV /18 kV	pcs	1
DTEK	Generation	Kryvoryzka TPP	Excitation transformer 20 kV / 1 kV	pcs	1
DTEK	Generation	Ladyzhyn TPP	Auxiliary transformer 40 MVA	pcs	1
DTEK	Generation	Burshtyn TPP	Generator 200 MW	pcs	2
DTEK	Generation	Kryvoryzka TPP	Generator 300 MW	pcs	1
DTEK	Generation	Kryvoryzka TPP	Turbine 300 MW	pcs	1
DTEK	Generation	Ladyzhyn TPP	Generator 300 MW	pcs	2
DTEK	Generation	Ladyzhyn TPP	Turbine 300 MW	pcs	1
DTEK	Generation	DTEK TIILIGULSKA WEP LLC	Blade BLA 79M A PA S R for 6 MW wind turbine	pcs	1
DTEK	Generation	DTEK TIILIGULSKA WEP LLC	Blade BLA 79M A PA S R for 6 MW wind turbine	pcs	2
DTEK	Generation	DTEK POKROVSKA SOLAR FARM LLC	150/35 kV three phase transformer 80 MVA	pcs	1
DTEK	Generation	DTEK POKROVSKA SOLAR FARM LLC	Power cable 35 kV, contol cable	m	8300
DTEK	Generation	DTEK POKROVSKA SOLAR FARM LLC	Distribution 35 kV Switchgear type KYN61-40.5 (35 kV, 2000A, 25 kA)	pcs	2
DTEK	Generation	DTEK NIKOPOLSKA SOLAR FARM LLC	Solar panels Trina Solar 330 Wp and Seraphim 330 Wp	pcs	750
DTEK	Generation	DTEK POKROVSKA SOLAR FARM LLC	Solar panels Risen RSM72-6-370M 370 Wp	pcs	4860
DTEK	Transmission	Kryvoryzka TPP	Autotransformer 250 MVA / 330 kV / 150 kV	pcs	1
DTEK	Generation	Pridnyprovska TPP	Power unit transformer 250 MVA / 150 kV / 18 kV	pcs	1
DTEK	Generation	Kryvoryzka TPP	Power unit transformer 400 MVA /154 kV / 20 kV	pcs	1

DTEK	Generation	Dobrotvir TPP	Power unit transformer 200 MVA / 220 kV /18 kV	pcs	1
DTEK	Generation	Burshtyn TPP	Power unit control system + TCS + turbine excitation system	pcs	1
DTEK	Generation	Burshtyn TPP	Equipment and materials for repairing damaged units (generator spare parts, pumps,	-	
DTEK	Generation	Ladyzhyn TPP	Equipment and materials for repairing damaged units (pipes, pumps, transformer oil,	-	
DTEK	Generation	Dobrotvir TPP	Equipment and materials for repairing damaged units (pipes, transformer oil, cable,	-	
DTEK	Generation	Burshtyn TPP	Specialized construction equipment (truck cranes, excavator, backhoe loader, tipper truck,	pcs	11
DTEK	Generation	Dobrotvir TPP	Specialized construction equipment (truck crane, hydraulic car lift, excavator,articulated	pcs	6
DTEK	Generation	Ladyzhyn TPP	Specialized construction equipment (truck with a manipulator, excavator, backhoe loader,	pcs	10
DTEK	Generation	WE maintenance	Specialized construction equipment (truck with a manipulator, trailer, truck crane, tractor unit,	pcs	14
DTEK	Generation	Pridnyprovska TPP	Specialized equipment for debris removal and remediation (truck with a manipulator,	pcs	5
DTEK	Generation	Kryvoryzka TPP	Specialized equipment for debris removal and remediation (truck with a manipulator,	pcs	8
DTEK	Generation	Burshtyn TPP	Recovery and replacement of the damaged turbine and boiler departments' equipment.	set	1
DTEK	Generation	Burshtyn TPP	Recovery and replacement of the damaged turbine and boiler departments' equipment.	set	1
DTEK	Generation	Dobrotvir TPP	Recovery and replacement of the damaged turbine and boiler departments' equipment.	set	1
DTEK	Generation	Dobrotvir TPP	Recovery and replacement of the damaged turbine and boiler departments' equipment.	set	1
DTEK	Generation	Ladyzhyn TPP	Recovery and replacement of the damaged turbine and boiler departments' equipment.	set	1
DTEK	Generation	Ladyzhyn TPP	Recovery and replacement of the damaged turbine and boiler departments' equipment.	set	1
DTEK	Generation	Kryvoryzka TPP	Recovery and replacement of the damaged turbine and boiler departments' equipment.	set	1
DTEK	Generation	Pridnyprovska TPP	Recovery and replacement of the damaged turbine and boiler departments' equipment.	set	1

DTEK	Generation	DTEK Westenergy	Open cycle gas turbine (OCGT) General Electric LM6000 PG 56 MW	pcs	2
DTEK	Generation	DTEK Westenergy	Gas booster compressors	pcs	2
DTEK	Generation	DTEK Westenergy	Ggrid connection equipment-step-up power transformer 80 MVA, other HV equipment	set	2
DTEK	Generation	DTEK Westenergy	Civil, Instalation and commissioning works	set	2
DTEK	Generation	DTEK Westenergy	Protective shelter	pcs	2
DTEK	Generation	Burshtyn TPP	Hot-dip galvanised steel trusses with tarpaulin roof 870m2 x 2,5m(h)	pcs	1
DTEK	Generation	Burshtyn TPP	Hot-dip galvanised steel trusses with tarpaulin roof 90m2 x 4,0m(h)	pcs	1
DTEK	Generation	Dobrotvir TPP	Hot-dip galvanised steel trusses with tarpaulin roof 90m2 x 2,5m(h)	pcs	1
DTEK	Generation	Dobrotvir TPP	Hot-dip galvanised steel trusses with tarpaulin roof 240 m2 x 4,0 m(h)	pcs	1
DTEK	Generation	Ladyzhyn TPP	Hot-dip galvanised steel trusses with tarpaulin roof 1200 m2 x 4,0 m(h)	pcs	1
DTEK	Generation	Kryvoryzka TPP	Hot-dip galvanised steel trusses with tarpaulin roof 720m2 x 4,0 m(h)	pcs	1
DTEK	Generation	Kryvoryzka TPP	Hot-dip galvanised steel trusses with tarpaulin roof 390m2 x 8,0 m(h)	pcs	1
DTEK	Generation	Pridnyprovska TPP	Hot-dip galvanised steel trusses with tarpaulin roof 1140m2 x 4,0 m(h)	pcs	1
DTEK	Generation	Pridnyprovska TPP	Hot-dip galvanised steel trusses with tarpaulin roof 240m2 x 2,5 m(h)	pcs	1
DTEK	Generation	Pridnyprovska TPP	Compressor units for the power plant compressor station	pcs	2
DTEK	Generation	Kryvoryzka TPP	Compressor units for the power plant compressor station	pcs	2
DTEK	Generation	Burshtyn TPP	Compressor units for the power plant compressor station	pcs	2
DTEK	Generation	Dobrotvir TPP	Compressor units for the power plant compressor station	pcs	2
DTEK	Generation	Pridnyprovska TPP	Boiler and turbine room cranes	pcs	4

DTEK	Generation	Kryvoryzka TPP	Boiler and turbine room cranes	pcs	4
DTEK	Generation	Ladyzhyn TPP	Boiler and turbine room cranes	pcs	4
DTEK	Generation	Burshtyn TPP	Boiler and turbine room cranes	pcs	4
DTEK	Generation	Dobrotvir TPP	Boiler and turbine room cranes	pcs	4
DTEK	Generation	Pridnyprovska TPP	Electrolysis units	pcs	2
DTEK	Generation	Kryvoryzka TPP	Electrolysis units	pcs	2
DTEK	Generation	Ladyzhyn TPP	Electrolysis units	pcs	2
DTEK	Generation	Burshtyn TPP	Electrolysis units	pcs	2
DTEK	Generation	Dobrotvir TPP	Electrolysis units	pcs	2
DTEK	Generation	Pridnyprovska TPP	Vehicle-based high-voltage laboratories	pcs	1
DTEK	Generation	Kryvoryzka TPP	Vehicle-based high-voltage laboratories	pcs	1
DTEK	Generation	Ladyzhyn TPP	Vehicle-based high-voltage laboratories	pcs	1
DTEK	Generation	Burshtyn TPP	Vehicle-based high-voltage laboratories	pcs	1
DTEK	Generation	Dobrotvir TPP	Vehicle-based high-voltage laboratories	pcs	1
DTEK	Generation	Kryvoryzka TPP	Crawler bulldozer (CAT D6GC or analogue)	pcs	1
Naftogaz	Gas Distribution	LLC "Gas Distribution	ERW steel pipe (DN250-1 OOO)	m	750
Naftogaz	Gas Distribution	LLC "Gas Distribution	Polyethylene pipes for combustible gas distribution PE 100 SDR-17.6	m	520
Naftogaz	Gas Distribution	LLC "Gas Distribution	Flanged ball valve, full bore 11c336n PN16 with reducer	pcs.	24
Naftogaz	Gas Distribution	LLC "Gas Distribution	Ball valve DN 350-1000 PN 25 (flanged)	pcs.	48

Naftogaz	Gas Distribution	LLC "Gas Distribution	Flanged welded ball valve, full bore 11c337n DN250-300 PN25 with reducer	pcs.	24
Naftogaz	Gas Distribution	LLC "Gas Distribution	Ball valve DN 400-600 PN 25	pcs.	28
Naftogaz	Gas Distribution	LLC "Gas Distribution	Welded ball valve with installation above ground level DN 70 0	pcs.	6
Naftogaz	Gas production	JSC Ukrgasvydobuvanny	Propane freeze-out unit 0=100-6000 tcm/day	pcs.	8
Naftogaz	Gas production	JSC Ukrgasvydobuvanny	Gas piston compressor with gas piston drive, Qg = 58-540 tcm/day	pcs.	10
Naftogaz	Gas production	JSC Ukrgasvydobuvanny	Gas piston compressorwith gas piston engine drive	pcs.	5
Naftogaz	Gas production	JSC Ukrgasvydobuvanny	Gas turbine drive with centrifugal compressor	pcs.	6
Naftogaz	Heating	JSC "Odessa CHP"	Disconnector 110kW Disconnector 110 kW РДЗ- 1-110/1000	pcs.	7
Naftogaz	Heating	JSC "Odessa CHP"	Disconnector 110 kW Disconnector 110 kW PД3-2-110/1 000	pcs.	9
Naftogaz	Heating	JSC "Odessa CHP"	Vacuum circuit breaker BP35HC outdoor installation, electromagnetically operated, with	pcs.	11
Naftogaz	Heating	JSC "Odessa CHP"	Vacuum circuit breaker 6-10 kW BP1	pcs.	50
Naftogaz	Heating	JSC "Odessa CHP"	Core switch BPC-11 O	pcs.	7
Naftogaz	Heating	JSC "Odessa CHP"	Pump type CE 1250-140-11 with electric motor, skid-mounted	pcs.	7
Naftogaz	Heating	JSC "KRYVORIZKA TEPLOSENTRAL"	Network pump CE 800/100	set	1
Naftogaz	Heating	JSC "KRYVORIZKA TEPLOSENTRAL"	Network pump CE 1250/140	set	3
Naftogaz	Heating	JSC "KRYVORIZKA TEPLOSENTRAL"	Water treatment system for heat supply system in modular design, system capacity: 100	system	1
Naftogaz	Heating	JSC "Kherson CHP"	ABB Gas circuit breaker type LTB 170 D1/B or GENERA L ENERGY GL313 F1/4031P	set	6
Naftogaz	Heating	JSC "Kherson CHP"	154 kV disconnector type РД3-2-150/1000 У1, with drive	set	14
Naftogaz	Heating	JSC "Kherson CHP"	Current transformer IBM (170 kV) or series ТФ3М-170-I У1, 600/5	set	6

Naftogaz	Heating	JSC "Kherson CHP"	Voltage transformer EMF (154 kV)	set	2
Naftogaz	Heating	JSC "Kherson CHP"	Surge arrester PEXLIM Q144-XH170	set	3
Naftogaz	Heating	JSC"Dniprovs'ka" CHP	Power transformer 500 kVa, 6300/23V, Connection scheme wye-wye-5 and Wye-delta-	Unit	1
Naftogaz	Heating	JSC"Dniprovs'ka" CHP	Network pump Д-1250-125 1250tph, Head 125m 1480R/min, 630kW Voltage 6000V	Unit	1
Naftogaz	Heating	JSC"Dniprovs'ka" CHP	Pressure regulator ITRON 3000 m3/h, Inlet pressure 0.6 bar, Outlet pressure 0.25 bar,	Unit	1
Naftogaz	Heating	Mykolaiv CHP	Power transformer ТРДНС-32000/35-У1	pcs.	1
Naftogaz	Heating	Mykolaiv CHP	Lube oil cooler MΠ-21	pcs.	4
Naftogaz	Heating	Mykolaiv CHP	Wilo Atmos GIGA-N 40/160-4/2 pump set	pcs.	1
Naftogaz	Heating	Mykolaiv CHP	Wilo Atmos GIGA-N 50/200-11/2 pump set	pcs.	2
Naftogaz	Heating	Mykolaiv CHP	Wilo SCP-200-360-HB stainless pump set	pcs.	1
Naftogaz	Heating	Mykolaiv CHP	Wilo Atmos GIGA-8 125/305-37/4-P6 pump set	pcs.	2
Naftogaz	Heating	Mykolaiv CHP	Wilo Atmos GIGA-B 80/170-30/2 pump set	pcs.	1
Naftogaz	Heating	Mykolaiv CHP	Wilo Atmos GIGA-B 65/215-22/2 pump set	pcs.	2
Naftogaz	Heating	Mykolaiv CHP	Pumping group: Wilo Yonos GIGA-N 50/200- 18,5/2-R1 pump - 3 pcs with control device	pcs.	1
Naftogaz	Heating	Mykolaiv CHP	Wilo SCP 200/460HA-160/4-FC pump set	pcs.	1
Naftogaz	Heating	Mykolaiv CHP	Wilo FA10.65E pump (with FK202H-4/22 drive, EMU pump, horizontal installation)	pcs.	4
Naftogaz	Heating	Mykolaiv CHP	Wilo Atmos GIGA-N 80/200-30/2 pump set	pcs.	3
Naftogaz	Heating	Mykolaiv CHP	Wilo SCP 250/700DV-630/4/6kV-R1/E1-FC pump set with 6000 V frequency converter	pcs.	2
Naftogaz	Storage	JSC Ukrtransgaz	Above-ground ball valve ON 1 OO PN150 (ANSI 900) with pneumatic actuator	pcs.	58

Naftogaz	Storage	JSC Ukrtransgaz	Fountain-type fitting	pcs.	6
Naftogaz	Storage	JSC Ukrtransgaz	Casing Head Assembly	pcs.	6
Naftogaz	Storage	JSC Ukrtransgaz	Gate valve 2 9/16" (65 mm) 3000 psi (2 1 Mpa)	pcs.	50
Naftogaz	Storage	JSC Ukrtransgaz	Gate valve 4 1/16" (100 mm) 3000 psi (21 Mpa)	pcs.	50
Naftogaz	Storage	JSC Ukrtransgaz	Manual ram blow-out preventer 7 1/16" x 3000 PSI	pcs.	3
Naftogaz	Storage	JSC Ukrtransgaz	High performance motor pump (60 I/s) with discharge hose L=300m.	pcs.	2
Naftogaz	Storage	JSC Ukrtransgaz	Portable Petrol Welding Generator (200A)	pcs.	2
Naftogaz	Storage	JSC Ukrtransgaz	Special off-road vehicle with a high-pressure pump	pcs.	2
Naftogaz	Storage	JSC Ukrtransgaz	AI I-terrain steamer truck	pcs.	1
Naftogaz	Storage	JSC Ukrtransgaz	All-terrain tank truck (volume 10-12 m3)	pcs.	2
Naftogaz	Storage	JSC Ukrtransgaz	Lifting unit for well workover with a lifting capacity of 60-80 tonnes.	pcs.	2
Naftogaz	Storage	JSC Ukrtransgaz	Cementing unit for repairing wells	pcs.	3
Naftogaz	Storage	JSC Ukrtransgaz	Gas turbine gas pumping unit of 25-32 MW	pcs.	2
Ukrhydroenergo	Generation	"Kremenchuk HPP" branch	Compressor Alup 341 No. 2, No.	pcs.	2
Ukrhydroenergo	Generation	"Kremenchuk HPP" branch	Power transformer 250 MBA 347/13,8 кВ	pcs.	1
Ukrhydroenergo	Generation	Seredniodniprovska HPP branch	Hydro unit No. 5 (oil head, upper bracket, stator, rotor, winding)	pcs.	1
Ukrhydroenergo	Generation	Seredniodniprovska HPP branch	Power transformer 130 MBA 150/10,5 кВ	pcs.	1
Ukrhydroenergo	Generation	Seredniodniprovska HPP branch	Auxiliary transformer 6,3 MVA 10/6,3	pcs.	1
Ukrhydroenergo	Generation	Seredniodniprovska HPP branch	Excitation transformers type TCP3 1690/10,5- 0,765	pcs.	1

Ukrhydroenergo	Generation	Kaniv HPP branch	Power transformer ТРД-90000/110 Block No.5	pcs.	1
Ukrhydroenergo	Generation	Kaniv HPP branch	SF6 block circuit-breaker BT-5 GL-312F1	pcs.	1
Ukrhydroenergo	Generation	Kaniv HPP branch	Transformer disconnector T-5 three-phase 600A S2DAT	pcs.	1
Ukrhydroenergo	Generation	Kaniv HPP branch	Single-phase current transformer IMB 123 Block No.5	pcs.	3
Ukrhydroenergo	Generation	Kaniv HPP branch	Single-phase current transformer IMB 123 Block No.4	pcs.	1
Ukrhydroenergo	Generation	Kaniv HPP branch	Power transformer ТРД-90000/110 Block No.4	pcs.	1
Ukrhydroenergo	Generation	Kaniv HPP branch	Excitation transformers of Resibloc TB-16 – TB-21 type	pcs.	6
Ukrhydroenergo	Generation	Kaniv HPP branch	Auxiliary transformer 10/0,4 kV 630 kVA T-15-3, Board 15CO	pcs.	1
Ukrhydroenergo	Generation	Kaniv HPP branch	Power transformer ТРД-90000/110 Block No.6	pcs.	1
Ukrhydroenergo	Generation	Kaniv HPP branch	Earthing disconnector 3OH-110M-II УХЛ1 Block No. 5	pcs.	3
Ukrhydroenergo	Generation	Dnipro HPP branch	Power transfromer FT11-12	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Power transfromer FT15-16	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Power transfromer FT17-18	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Power transfromer T3	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Power transfromer T4	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Circuit-breaker EB ГТ 11-12	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Circuit-breaker EB ГТ 15-16	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Circuit-breaker EB ГТ 17-18	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Surge arrester FT 11-12	pcs.	1

Ukrhydroenergo	Generation	Dnipro HPP branch	Surge arrester FT 13-14	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Surge arrester FT 15-16	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Surge arrester FT 17-18	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Surge arrester Л 1	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Surge arrester Л-2	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Disconnector Л1-01	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Disconnector Л1-02	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Disconnector Л2-01	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Disconnector Л2-02	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Voltage transformer TH Л1	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Voltage transformer TH Л2	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Current transformer IT11-12	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Current transformer IT13-14	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Current transformer IT15-16	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Current transformer IT17-18	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Tailrace gate set No.1	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Tailrace gate set No.2	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Semigantry unit crane No.2	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Semigantry unit crane №1	pcs.	1

Ukrhydroenergo	Generation	Dnipro HPP branch	Unit cranes runways	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Unit cranes power trolleys	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Gantry crane Service bridge НБ ДГЭС-2	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Service bridge crane runways	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Lifting beam for handling a rotor	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Hydraulic turbine with equipment set, № 14	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Hydro generator with equipment set No. 14	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Hydraulic turbine with equipment set, № 17	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Hydro generator with equipment set No. 17	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Hydraulic turbine with equipment set, № 18	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Hydro generator with equipment set No. 18	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Hydro generator with equipment set No. 15	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Hydro generator with equipment set No. 16	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	DC panel BY1, BY2, BY3	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Truck Crane Liebherr ELTM 1300-6.4 (STANDART) or the analogue is not worse	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Hydraulic turbine with equipment set, № 8	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Hydro generator with equipment set No. 8	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Hydraulic turbine with equipment set, № 9	pcs.	1
Ukrhydroenergo	Generation	Dnipro HPP branch	Hydro generator with equipment set No. 9	pcs.	1

Ukrenergo	TSO	Autotransformer 330 ATDTSN -	set (3	2
		250000/330/150/35	phases)	
Ukrenergo	TSO	Autotransformer 330 ATDTTN -	set (3	2
		25000/330/150/10	phases)	
Ukrenergo	TSO	Autotransformer 330 ATDTN -	set (3	2
		20000/330/110/35	phases)	
Ukrenergo	TSO	Autotransformer 330 ATDTN -	set (3	2
		20000/330/110/10	phases)	
Ukrenergo	TSO	Autotransformer 330 ATDTN -	set (3	2
		200000/330/110/6	phases)	
Ukrenergo	TSO	Autotransformer 330 ATDTN -	set (3	2
-		125000/330/110/35	phases)	
Ukrenergo	TSO	Autotransformer 330 ATDTN -	set (3	2
-		125000/330/110/10	phases)	
Ukrenergo	TSO	Autotransformer 330 ATDTN -	set (3	1
		125000/330/110/6	phases)	
Ukrenergo	TSO	Autotransformer 220 ATDTN -	set (3	1
		200000/220/110/35	phases)	
Ukrenergo	TSO	Autotransformer 220 ATDTN -	set (3	1
8·		200000/220/110/10	phases)	
Ukrenergo	TSO	Autotransformer 220 ATDTN -	set (3	1
om energo	150	125000/220/110/35	phases)	
Ukrenergo	TSO	Autotransformer 220 ATDTN -	set (3	1
Oktenergo	130	125000/220/110/10	phases)	
Ukrenergo	TSO	Autotransformer 220 ATDTN -	set (3	1
Oktenergo	130	125000/220/110/6	phases)	
Ukrenergo	TSO	Shunt Reactor 750 ROM - 110000/750	phase	3
Ukrenergo	TSO	Phase-Shifting Transformer 150 OTDTNP - 92000/150	phase	3
Ukrenergo	TSO	Voltage transformer 750 Capacitive Rated Voltage - 750/V3 kV	phase	12
Ukrenergo	TSO	Voltage transformer 330 Rated Voltage - 330/V3 kV	phase	18
Ukrenergo	TSO	Voltage transformer 220 SF6 Rated Voltage - 220/V3 kV	phase	3
Ukrenergo	TSO	Voltage transformer 150 SF6 Rated Voltage - 150/V3 kV	phase	21

Ukrenergo	TSO	Voltage transformer 110 SF6 Rated Voltage - 110/V3 kV	phase	18
Ukrenergo	TSO	Surge arrester 750 Type PBMK-750M Rated Voltage (Ur) - 612 kV	pcs.	24
Ukrenergo	TSO	Surge arrester 330 Rated Voltage of the SA (Ur) - 288 kV	pcs.	54
Ukrenergo	TSO	Surge arrester 220 Rated Voltage of the SA (Ur) - 192 kV	pcs.	15
Ukrenergo	TSO	Surge arrester 150 Rated Voltage of the SA (Ur) - 138 kV	pcs.	42
Ukrenergo	TSO	Surge arrester 110 Rated Voltage of the SA (Ur) - 108 kV	pcs.	39
Ukrenergo	TSO	HV bushing 330 Rated current - 1000A	pcs.	5
Ukrenergo	TSO	HV bushing 150 Rated current - 800A / 1250A / 2000A	pcs.	12
Ukrenergo	TSO	HV bushing 110 Rated current - 800A / 2000A	pcs.	30
Ukrenergo	TSO	Coupling capacitor 750 Unominal - 750 kV	phase	2
Ukrenergo	TSO	Coupling capacitor 330 Unominal - 362 kV	phase	2
Ukrenergo	TSO	Line trap Inominal - 4000A	pcs.	1
Ukrenergo	TSO	Battery Battery voltage - 230 V Element voltage - 2 V	set	1
Ukrenergo	TSO	Terminal cabinet Туре ЯЗВ - 90	pcs.	10
Ukrenergo	TSO	Terminal cabinet Туре ЯЗВ - 120	pcs.	10
Ukrenergo	TSO	Terminal cabinet Туре ЯЗВ - 200	pcs.	10
Ukrenergo	TSO	Control cable KVVGng (kVBГЕнг) 10х2,5 mm2	m.	40000
Ukrenergo	TSO	Control cable KVVGng (kVBГЕнг) 14x2,5 mm2	m.	40000
Ukrenergo	TSO	Control cable KVVGng (kVBГЕнг)19х2,5 mm2	m.	40000

Ukrenergo	TSO	Gabion Type - MIL 7	pcs.	550
Ukrenergo	TSO	Rail (12.5 m) P50	pcs.	273
Ukrenergo	TSO	Rail (12.5 m) P55	pcs.	2
Ukrenergo	TSO	Rail (12.5 m) P65	pcs.	3
Ukrenergo	TSO	Rail (12.5 m) P38	pcs.	4
Ukrenergo	TSO	Multi-functional loader According to the specifications	pcs.	13
Ukrenergo	TSO	6+1 (6 passengers + 1 driver) off-road minibus According to the specifications	pcs.	1
Ukrenergo	TSO	Minibus 8+1 According to the specifications	pcs.	17
Ukrenergo	TSO	Minibus 16+1 (4x2) According to the specifications	pcs.	28
Ukrenergo	TSO	All-terrain vehicle (4x4) According to the specifications	pcs.	13
Ukrenergo	TSO	mobile drilling rig According to the specifications	pcs.	1
Ukrenergo	TSO	Shielding fabric for manufacturing protective suits used for safely performing work on live	m2	3850
Ukrenergo	TSO	Circuit Breaker 750 Rated current - 4000A Breaking current of the short-cirucit - 40 кА	set (3 phases)	8
Ukrenergo	TSO	Circuit Breaker 420 Rated current - 4000 A Breaking current of the short-cirucit - 40 кА	set (3 phases)	10
Ukrenergo	TSO	Circuit Breaker 330 Rated current - 3150A Breaking current of the short-cirucit - 50 кА	set (3 phases)	1
Ukrenergo	TSO	Circuit Breaker 220 Rated current - 3150 A Breaking current of the short-cirucit - 40 κA	set (3 phases)	5
Ukrenergo	TSO	Circuit Breaker 150 Rated current - 3150A Breaking current of the short-cirucit - 40 кА	set (3 phases)	8
Ukrenergo	TSO	Circuit Breaker 110 Rated current - 3150 A Breaking current of the short-cirucit - 40 кА	set (3 phases)	11
Ukrenergo	TSO	Circuit Breaker 110 Rated current - 2000A Breaking current of the short-cirucit - 50 кA	set (3 phases)	4

Ukrenergo	TSO	Disconnector 750 kV with one earthing blade 750 Inominal - 3150A	set (3 phases)	2
		Disconnector 750 kV with two earthing blades	set (3	
Ukrenergo	TSO	750 Rated current - 3150 A	phases)	5
		Disconnector 330 kV with one earthing blade	set (3	
Ukrenergo	TSO	330 Rated current - 3200 (2000)A	phases)	1
		Disconnector 330 kV with two earthing blades	set (3	
Ukrenergo	TSO	330 Rated current - 3200 (2000)A	phases)	8
		Disconnector 220 kV with two earthing blades	set (3	
Ukrenergo	TSO	220 Rated current - 2000A	phases)	3
		Disconnector 150 kV with one earthing blade	set (3	
Ukrenergo	TSO	150 Rated current - 2000A	phases)	1
		Disconnector 150 kV with two earthing blades	set (3	
Ukrenergo	TSO	150 Rated current - 2000A	phases)	10
		Disconnector 110 kV with two earthing blades	set (3	
Ukrenergo	TSO	110 Rated current - 2000A	phases)	10
		Current transformers 750 SF6	priases	
Ukrenergo	TSO	Transformation ratio -	phase	32
		Current transformers 330 SF6		
Ukrenergo	TSO	Rated voltage - 330 kV	phase	24
		Current transformers 330 SF6		
Ukrenergo	TSO	Rated voltage - 330 kV	phase	15
		Current transformers 220 SF6		
Ukrenergo	TSO	Rated voltage - 220 kV	phase	21
		Current transformers 150 SF6		
Ukrenergo	TSO	Rated voltage - 150 kV	phase	27
		Current transformers 150 SF6		
Ukrenergo	TSO	Rated voltage - 150 kV	phase	15
		Current transformers 150 SF6		
Ukrenergo	TSO	Rated voltage - 150 kV	phase	15
		Current transformers 150 SF6		
Ukrenergo	TSO	Rated voltage - 150 kV	phase	15
		Current transformers 110 SF6		
Ukrenergo	ergo TSO	Rated voltage - 110 kV	phase	30
		Current transformers 110 SF6		
Ukrenergo	TSO	Rated voltage - 110 kV	phase	18
	T00	Current transformers 110 SF6		10
Ukrenergo TS	TSO	Rated voltage - 110 kV	phase	18

Ukrenergo	TSO		Current transformers 110 Transformation ratio - 1000-2000/5	phase	42
Ukrenergo	TSO		Diesel generators 250 kW	pcs.	2
Ukrenergo	TSO		Diesel generators 275 kW	pcs.	2
Ukrenergo	TSO		Diesel generators 350 kW	pcs.	6
Ukrenergo	TSO		Diesel generators 400 kW	pcs.	3
Ukrenergo	TSO		Diesel generators 500 kW	pcs.	1
Ukrenergo	TSO		Diesel generators 700 kW	pcs.	3
Ukrenergo	TSO		Autotransformer 330 ATDTN - 125000/330/110/6	set (3 phases)	2
Ukrenergo	TSO		Circuit Breaker 750 Gas-insulated circuit breakers 750 kV type LTB 800E4, U nominal =	set (3 phases)	3
Ukrenergo	TSO		Autotransformer 750 Single-phase 750/330/15.75 kV Autotransformer 333 MVA	phase	1
Ukrenergo	TSO		Phase-Shifting Transformer 150 OTDTNP - 92000/150	phase	2
Ukrenergo	TSO		Shunt Reactor 750 ROM - 110000/750	phase	2
Kremenchuk CHPP	Generation	Department 1	Jenbacher J920 FleXtra gas piston unit (10,400 MW). (or several containerized gas-piston	piece	1
Kremenchuk CHPP	Generation	Department 1	TDTN-63000-150/U1 power transformer	piece	1
Kremenchuk CHPP	Generation	Department 1	Oil TP-22S TU U23.2-30802090-015:2003, TU U23.2-00149943-544-2004, TU 022409155-98	t	32
Kremenchuk CHPP	Generation	Department 1	Pump unit feeding with an electric motor type PE 380-185-5	sht.	1
Kremenchuk CHPP	Generation	Department 1	Mitsubishi Power gas turbine unit, model MOBILEPAC, with an FT8 engine	piece	1
Chernihiv CHPP	СНР	Chernihiv CHPP	Парова турбіна з генератором потужністю 60 МВт	pcs.	1
Chernihiv CHPP	СНР	Chernihiv CHPP	Реконструкція КЕП «Чернігівська ТЕЦ» із переведенням котлоагрегатів ст. №№1-4 на	pcs.	

Chernihiv CHPP	СНР	Chernihiv CHPP	Реконструкція системи збудження Г-2	pcs.	
Chernihiv CHPP	СНР	Chernihiv CHPP	Заміна екранної системи котлоагрегату ст. №4	pcs.	
Chernihiv CHPP	СНР	Chernihiv CHPP	Відновлення розпалювальної мазутонасосної	pcs.	
Chernihiv CHPP	СНР	Chernihiv CHPP	Проєктні роботи по відновленню мазутного господарства	pcs.	
Chernihiv CHPP	СНР	Chernihiv CHPP	Проєктні роботи по реконструкція ХВО	pcs.	
Chernihiv CHPP	СНР	Chernihiv CHPP	Repair of a turbine generator (Generator TV 60- 2)	pcs.	
Kharkiv CHPP 2	СНР	Thermal power plant "Kharkiv CHPP	Energy boiler of a power plant №10 (67-2CΠ)	Unit	1
Kharkiv CHPP 2	СНР	Thermal power plant "Kharkiv CHPP	Energy boiler of a power plant №11 (67-2CΠ)	Unit	1
Kharkiv CHPP 2	СНР	Thermal power plant "Kharkiv CHPP	General station equipment and buildings	Unit	1
Kharkiv CHPP 2	СНР	Thermal power plant "Kharkiv CHPP	Turbogenerator №7(turbine T-37/50-90 generator TB-50-2)	Unit	1
Kharkiv CHPP 2	СНР	Thermal power plant "Kharkiv CHPP	Energy boiler of a power plant №12 (67-2CП)	Unit	1
КП БМР "БЦТМ"	СНР	Теплоцентраль	Трансформатор зв'язку - ТДН 63000/110 Y/Δ- 11, 115+9 x1,78%/6,3 кВ	шт.	2
КП БМР "БЦТМ"	СНР	Теплоцентраль	Вимикач 6 кВ вакуумний трьохполюсний на номінальний струм 8000 A Siemens Energy	шт.	2
КП БМР "БЦТМ"	СНР	Теплоцентраль	Комплект: Комірка 6кВ (КУ — 10Ц)з трансформатором напруги 6 кВ - 3*lvs1	шт.	1
КП БМР "БЦТМ"	СНР	Теплоцентраль	Акумуляторна батарея разом з підзарядним пристроїм - 16Ogi 880 Classic 112 банок	шт.	2
КП БМР "БЦТМ"	СНР	Теплоцентраль	Панель основного захисту генератора, панель резервного захисту генератора	шт.	2
КП БМР "БЦТМ"	СНР	Теплоцентраль	Панель основного захисту ПЛ-110 кВ, Панель резервного захисту ПЛ-110 кВ,	шт.	1
КП БМР "БЦТМ"	СНР	Теплоцентраль	Вимірювальні трансформатори струму 110кВ - IOSK 123 1000/5A, 0,2S/0,2 S /10P/10P/10P	шт.	12
КП БМР "БЦТМ"	СНР	Теплоцентраль	Реактор заземлюючий дугогасний 6 кВ з плавним регулюваннямРЗДПОМ (A)-300/6 У1	шт.	2

КП БМР "БЦТМ"	СНР	Теплоцентраль	Панель основного захисту тр-ра зв'язку, панель резервного захисту тр-ра зв'язку	шт.	2
КП БМР "БЦТМ"	СНР	Теплоцентраль	Лінійні роз'єднувачі 110 кВ - ONIII- 126/2500/U2	шт.	2
КП БМР "БЦТМ"	СНР	Теплоцентраль	Реактор заземлюючий дугогасний 6 кВ з ступінчатим регулюваннямРЗДСОМ (A)-480/6	шт.	2
КП БМР "БЦТМ"	СНР	Теплоцентраль	Панель регулювання дугогасних котушок 6 кВ, Панель регулювання дугогасної котушки ;	шт.	1
КП БМР "БЦТМ"	СНР	Теплоцентраль	Панель реле центральної сигналізації	шт.	1
КП БМР "БЦТМ"	СНР	Теплоцентраль	Панель центральних апаратів синхронізації, панель синхронізації	шт.	1
КП БМР "БЦТМ"	СНР	Теплоцентраль	Прохідні ізолятори - ИП-10/10000-42,5 УХЛ1	шт.	12
КП БМР "БЦТМ"	СНР	Теплоцентраль	Трансформатор силовий 6/0,4 кВ, 400 кВА, Ун/Д-11 з ПБВ ±2х2,5% ТМ 400/6 У1	шт.	2
КП БМР "БЦТМ"	СНР	Теплоцентраль	Ізолятор опорно-стержневий 35 кВ,ОНШ-35- 20 УХЛ1	шт.	96
КП БМР "БЦТМ"	СНР	Теплоцентраль	Панель лічильників	шт.	2
КП БМР "БЦТМ"	СНР	Теплоцентраль	Панель захисту струмопровода 6 кВ	шт.	2
КП БМР "БЦТМ"	СНР	Теплоцентраль	Обмежувачі перенапруг 110 кВ - SBKC 108/SM-II	шт.	2
КП БМР "БЦТМ"	СНР	Теплоцентраль	Трансформатори напруги 6 кВ - lvs1 6000/ v3, 100/v3,100/3 0.5P (група з трьох	шт.	4
КП БМР "БЦТМ"	СНР	Теплоцентраль	Шина алюмінієва коробчатого ГОСТ 13623-90 перерізу АТ-200х90х12	М	152

1			

1 1		I	I I	

List of equipment damaged during air strikes and needed to be replaced							
Estimated total value (Euros, excl. VAT)	Lost/installed capacity	Priority of restoration	Deadline for supply of equipment to ensure performance of the assignments	Recovery date (if the equipment is delivered on the specified date)	Possible manufacturer		
7	8	9	10	11	12		
20.000.000,0	Decreasing the reliability of	1	2024	December 2024	JSC "Zavod Elektrovazhmash",		
8.596.200,0	Decreasing the reliability of	1	2024	December 2024	ZRT (Zaporizhia transformer), Hitachi,		
501.600,0	Decreasing the reliability of	1	2024	December 2024	According to the results of bidding.		
58.140,0	Decreasing the reliability of	1	2024	December 2024	ABB, Siemens, Koncar		
115.275,0	Decreasing the reliability of	1	2024	December 2024	ABB, Siemens, Koncar, Hitachi		
59.232,0	Decreasing the reliability of	1	2024	December 2024	ABB, Siemens, Hitachi		
7.650,0	Decreasing the reliability of	1	2024	December 2024	ABB, Siemens, Hitachi		
2.350,0	Decreasing the reliability of	1	2024	December 2024	Ukrainian manufacturer: PJSC "PRMZ",		
500.000,0	Decreasing the reliability of	1	2024	December 2024	Zaporizhzhia Cable Plant, Odesa Cable Plant		
20.000.000,0	Decreasing the reliability of	2	01.04.2025	June 2025	JSC "Zavod Elektrovazhmash",		
76.338,0	Decreasing the reliability of	2	01.04.2025		ABB, Siemens, Hitachi		
15.300,0	Decreasing the reliability of	3	01.04.2025	December 2025	According to the results of open bidding.		
15.300,0	Decreasing the reliability of	3	01.04.2025	December 2025	According to the results of open bidding.		

1.526,0	Decreasing the reliability of	3	01.09.2025	December 2025	According to the results of open bidding.
1.437,0	Decreasing the reliability of	3	01.09.2025	December 2025	According to the results of open bidding.
3.644,0	Decreasing the reliability of	3	01.09.2025	December 2025	According to the results of open bidding.
417.500,0	Decreasing the reliability of	3	01.09.2025	December 2025	According to the results of open bidding.
835.000,0	Decreasing the reliability of	3	01.09.2025	December 2025	According to the results of open bidding.
4.578,0	Decreasing the reliability of	3	01.09.2025	December 2025	According to the results of open bidding.
1.526,0	Decreasing the reliability of	3	01.09.2025	December 2025	According to the results of open bidding.
417.500,0	Decreasing the reliability of	3	01.09.2025	December 2025	According to the results of open bidding.
12.000.000,0	Decreasing the reliability of	1	2024	December 2024	JSC "Zavod Elektrovazhmash",
288.960,0	Decreasing the reliability of	1	2024	December 2024	JSC "Zavod Elektrovazhmash",
800.000,0	Decreasing the reliability of	1	2024	December 2024	Zaporizhzhia Cable Plant, Odesa Cable Plant
11.295.000,0	Decreasing the reliability of	1	2024	December 2024	ZRT (Zaporizhia transformer),ABB, Hitachi,
492.400,0	Decreasing the reliability of	1	2024	December 2024	ZRT (Zaporizhia transformer),ABB, Hitachi,
1.568.750,0	Decreasing the reliability of	2	01.04.2025	June 2025	ZRT (Zaporizhia transformer),ABB, Hitachi,
501.600,0	Decreasing the reliability of	1	2024	December 2024	According to the results of bidding.
630.000,0	Decreasing the reliability of	1	2024	December 2024	According to the results of bidding.
2.350.000,0	Decreasing the reliability of	1	2024	December 2024	Ukrainian manufacturer: PJSC "PRMZ",
367.200,0	Decreasing the reliability of	1	2024	December 2024	Kyiv plant of roofing materials
47.700,0	Decreasing the reliability of	1	2024	December 2024	Kyiv plant of roofing materials

3.000.000,0	Decreasing the reliability of	1	2024	December 2024	PE PLMZ
24.000.000,0	Decreasing the reliability of	2	01.04.2025	June 2025	JSC "Zavod Elektrovazhmash",
3.000.000,0	Decreasing the reliability of	2	01.04.2025	June 2025	PE PLMZ, JSC Ukrainian Energy Machines
56.000,0	Decreasing the reliability of	2	01.04.2025	June 2025	Slobodian Electromechanical Plant
3.600,0	Decreasing the reliability of	2	01.04.2025	June 2025	Slobodian Electromechanical Plant
3.052,0	Decreasing the reliability of	2	01.04.2025	June 2025	Slobodian Electromechanical Plant
1.526,0	Decreasing the reliability of	2	01.04.2025	June 2025	Slobodian Electromechanical Plant
56.000,0	Decreasing the reliability of	2	01.04.2025	June 2025	Slobodian Electromechanical Plant
144.480,0	Decreasing the reliability of	2	01.04.2025	June 2025	JSC "Zavod Elektrovazhmash",
12.500,0		1	2nd quarter of 2024	10 days from the date of delivery of	
60.000,0	240/240 MW	1	2nd quarter of 2024	14 days from the date of delivery of	
60.000,0		1	2nd quarter of 2024	5 days from the date of delivery of	
92.350,0	120/120 МВт	1	4 квартал 2024 року	5 днів з моменту постачання	
33.810,0		1	2nd quarter of 2024	5 days from the date of delivery of	
1.800,0	120/120 МВт	1	4 квартал 2024 року	5 днів з моменту постачання	
2.400,0	120/120 MW	1	4nd quarter of 2024	2 days from the date of delivery of	
8.000,0	120/120 MW	2	4nd quarter of 2024	2 days from the date of delivery of	
33.000,0	120/120 MW	1	4nd quarter of 2024	7 days from the date of delivery of	
91.000,0	120/120 MW	1	4nd quarter of 2024	30 days from the date of delivery of	

12.000,0	120/120 MW	1	4nd quarter of 2024	2 days from the	
				date of delivery of 8 days from the	
41.700,0	240/240 MW	1	2nd quarter of 2024	date of delivery of	
				-	
15.000,0	120/120 MW	1	2nd quarter of 2024	4 days from the date of delivery of	
				5 days from the	
60.000,0	120/120 MW	1	2nd quarter of 2024	date of delivery of	
				30 days from the	
312.600,0	240/240 MW	2	4nd quarter of 2024	date of delivery of	
				45 days from the	
270.900,0	120/120 MW	1	4nd quarter of 2024	date of delivery of	
				30 days from the	
135.000,0	120/120 MW	2	4nd quarter of 2024	date of delivery of	
				30 days from the	
412.500,0	120/120 MW	2	4nd quarter of 2024	date of delivery of	
				30 days from the	
400.000,0	120/120 MW	2	4nd quarter of 2024	1 1	
				date of delivery of 30 days from the	
2.550,0	120/120 MW	2	4nd quarter of 2024	date of delivery of	
				30 days from the	
83.350,0	240/240 MW	2	4nd quarter of 2024	date of delivery of	
				30 days from the	
10.000,0	120/120 MW	2	4nd quarter of 2024	date of delivery of	
				30 days from the	
24.000,0	240/240 MW	1	2nd quarter of 2024	date of delivery of	
				30 days from the	
104.310,0	300/300 MW	1	2nd quarter of 2024	1 1	
				date of delivery of 30 days from the	
2.250,0	120/120 MW	1	2nd quarter of 2024	date of delivery of	
120.000,0	120/120 MW	1	2nd quarter of 2024	30 days from the date of delivery of	
				30 days from the	
348.150,0	120/120 MW	1	July 15, 2024	date of delivery of	
				-	ПРИВАТНЕ
20.730,0	120/120 MBT	1	4 квартал 2024 року	40 днів з дати	
				постачання	ПІДПРИЄМСТВО
320,0	120/120 MBT	1	4 квартал 2024 року	41 день з дати	ТОВ «Ел.Трейд».
				постачання	

640,0	120/120 МВт	1	4 квартал 2024 року	42 дні з дати постачання	ТОВ «Ел.Трейд».
200,0	120/120 МВт	1	4 квартал 2024 року	43 дні з дати постачання	ТОВ «Ел.Трейд».
400,0	120/120 МВт	1	4 квартал 2024 року	44 дні з дати постачання	ТОВ «Ел.Трейд».
45.840,0	120/120 МВт	1	4 квартал 2024 року	45 днів з дати постачання	ТОВ "ТЕХНОСЕРВІС ПРОМГРУПП".
108.420,0	120/120 MB	1	4 квартал 2024 року	46 днів з дати постачання	
54.100,0	120/120 MB	1	4 квартал 2024 року	46 днів з дати постачання	Honeywell
10.000,0	120/120 MB	1	4 квартал 2024 року	30 днів з дати постачання	ТОВ "СКБ "Вібрації та ресурсу"
21.350,0		1	4 квартал 2024 року	38 днів з дати постачання	ТОВ «ГЕНЕРАЛЬНА ЕНЕРГЕТИЧНА
15.330,0		1	4 квартал 2024 року	39 днів з дати постачання	Виробнича компанія Товариство з
4.628.000,0	240 MW	1	2024	60 days after supply	ZTR (Ukraine), GE, Siemens
2.314.000,0	150 MW	1	2024	60 days after supply	ZTR (Ukraine), GE, Siemens
3.008.000,0	n/a	1	2024	60 days after supply	ZTR (Ukraine), GE, Siemens
8.054.000,0	n/a	1	2024	60 days after supply	ZTR (Ukraine), GE, Siemens
1.666.000,0	n/a	1	2024	60 days after supply	ZTR (Ukraine), GE, Siemens
2.129.000,0	n/a	1	2024	60 days after supply	ZTR (Ukraine), GE, Siemens
3.147.000,0	300 MW	1	2024	60 days after supply	ZTR (Ukraine), GE, Siemens
3.888.000,0	438 MW	1	2024	60 days after supply	ABB, Siemens, Emerson, Schneider Electric
2.684.000,0	120 MW	1	2024	60 days after supply	ZTR (Ukraine), GE, Siemens
6.666.000,0	n/a	1	2024	60 days after supply	ZTR (Ukraine), GE, Siemens

2.036.000,0	n/a	1	2024	60 days after	ZTR (Ukraine), GE,
	, ~	_		supply	Siemens
1.805.000,0	160 MW	1	2024	60 days after	ZTR (Ukraine), GE,
1.003.000,0	100 1010		2027	supply	Siemens
93.000,0	n/a	1	2024	30 days after	ABB
33.000,0	11/ a		2024	supply	ABB
509.000,0	n/a	1	2024	60 days after	ZTR (Ukraine), GE,
309.000,0	11/ a	1	2024	supply	Siemens
20.800.000,0	329 MW	3	2025	90 days after	Ukrainian Energy
20.800.000,0	329 10100	5	2025	supply	Machines, GE, Siemens
13 500 000 0	200 1414	2	2025	90 days after	Ukrainian Energy
13.500.000,0	290 MW	3	2025	supply	Machines, GE, Siemens
25,000,000,0	(#55040)	_	2025	330 days after	Ukrainian Energy
26.000.000,0	(#DE018)	3	2025	supply	Machines, GE, Siemens
27.000.000.0	422.1414	_	2025	90 days after	Ukrainian Energy
27.000.000,0	438 MW	3	2025	supply	Machines, GE, Siemens
	(_		330 days after	Ukrainian Energy
26.000.000,0	(#DE020)	3	2025	supply	Machines, GE, Siemens
				20 days after	
800.000,0	6 MW	1	September 2024	supply	Vestas
				20 days after	
1.500.000,0	12 MW	1	September 2024	supply	Vestas
				20 days after	ZTR (Ukraine), GE,
900.000,0	25 MW	1	September 2024	supply	Siemens
				20 days after	
153.600,0	(#DR003)	1	September 2024	supply	Large number of suppliers
				20 days after	
1.300.000,0	(#DR003)	1	September 2024	supply	Siemens
				20 days after	Shanghai JA Solar
54.450,0	3 MW	1	September 2024	supply	Technology
				20 days after	Shanghai JA Solar
395.604,0	4 MW	1	September 2024	supply	Technology
				60 days after	ZTR (Ukraine), GE,
2.270.000,0	n/a	1	2024	supply	Siemens
				60 days after	ZTR (Ukraine), GE,
2.270.000,0	125 MW	1	2024	supply	Siemens
	+			60 days after	ZTR (Ukraine), GE,
3.100.000,0	289 MW	1	2024		
				supply	Siemens

2.000.000,0	160 MW	1	2024	60 days after	ZTR (Ukraine), GE,
				supply	Siemens ABB, Siemens, Emerson,
1.900.000,0	190 MW	1	2024	60 days after	Schneider Electric
				supply 60 days after	Schneider Electric
2.916.240,0	n/a	1	September 2024	'	Different manufacturers
				supply 60 days after	
4.069.390,0	n/a	1	September 2024	supply	Different manufacturers
				60 days after	
1.724.370,0	n/a	1	September 2024	supply	Different manufacturers
2.444.100,0	n/a	1	September 2024	n/a	Different manufacturers
762.000,0	n/a	1	September 2024	n/a	Different manufacturers
2.309.100,0	n/a	1	September 2024	n/a	Different manufacturers
2.314.350,0	n/a	1	September 2024	n/a	Different manufacturers
502.000,0	n/a	1	September 2024	n/a	Different manufacturers
2.139.100,0	n/a	1	September 2024	n/a	Different manufacturers
				60-90 days after	Wide range of products,
37.800.000,0	n/a	1	2024	supply	large number of suppliers
	,			60-90 days after	Wide range of products,
9.400.000,0	n/a	1	2024	supply	large number of suppliers
	,			60-90 days after	Wide range of products,
11.200.000,0	n/a	1	2024	supply	large number of suppliers
	,			60-90 days after	Wide range of products,
4.400.000,0	n/a	1	2024	supply	large number of suppliers
0.000.000.0	,	_	2024	60-90 days after	Wide range of products,
8.800.000,0	n/a	1	2024	supply	large number of suppliers
43 500 000 0	,	_	2024	60-90 days after	Wide range of products,
42.500.000,0	n/a	1	2024	supply	large number of suppliers
0.400.000.0	/-	4	2024	60-90 days after	Wide range of products,
8.100.000,0	n/a	1	2024	supply	large number of suppliers
0.000.000.0	- /-	1	2024	60-90 days after	Wide range of products,
8.800.000,0	n/a	1	2024	supply	large number of suppliers

60.000.000,0	112 MW	1	2024	2025	GE VERNOVA
10.200.000,0	(#DE041)	1	2024	2025	Ariel Corp
6.400.000,0	(#DE041)	1	2024	2025	GE VERNOVA
26.500.000,0	(#DE041)	1	2024	2025	Large number of suppliers
11.000.000,0	(#DE041)	1	2024	2025	Large number of suppliers
182.000,0	n/a	1	ASAP	Sep 2024	Layher, AT-PAC, Bil-Jax
28.000,0	n/a	1	ASAP	Oct 2024	Layher, AT-PAC, Bil-Jax
26.000,0	n/a	1	ASAP	Oct 2024	Layher, AT-PAC, Bil-Jax
54.000,0	n/a	1	ASAP	Nov 2024	Layher, AT-PAC, Bil-Jax
262.000,0	n/a	1	ASAP	Dec 2024	Layher, AT-PAC, Bil-Jax
159.000,0	n/a	1	ASAP	Sep 2024	Layher, AT-PAC, Bil-Jax
100.000,0	n/a	1	ASAP	Sep 2024	Layher, AT-PAC, Bil-Jax
247.000,0	n/a	1	ASAP	Nov 2024	Layher, AT-PAC, Bil-Jax
52.000,0	n/a	1	ASAP	Nov 2024	Layher, AT-PAC, Bil-Jax
139.000,0	n/a	2	2025	60-90 days after supply	BTS Group Kyiv
139.000,0	n/a	2	2025	60-90 days after supply	BTS Group Kyiv
139.000,0	n/a	2	2025	60-90 days after supply	BTS Group Kyiv
139.000,0	n/a	2	2025	60-90 days after	BTS Group Kyiv
3.515.000,0	n/a	2	2025	60-90 days after supply	Kyiv Crane Machinery Plant LLC

3.515.000,0	n/a	2	2025	60-90 days after	Kyiv Crane Machinery Plant LLC
3.515.000,0	n/a	2	2025	supply 60-90 days after	Kyiv Crane Machinery
3.313.000,0	11/ 4		2023	supply	Plant LLC
3.515.000,0	n/a	2	2025	60-90 days after	Kyiv Crane Machinery
	·			supply	Plant LLC
3.515.000,0	n/a	2	2025	60-90 days after	Kyiv Crane Machinery Plant LLC
				supply	Plant LLC
510.000,0	n/a	2	2025	60-90 days after supply	CRYO Inter TradingKyiv
510.000,0	n/a	2	2025	60-90 days after	CRYO Inter TradingKyiv
310.000,0	II/ a		2023	supply	CKTO IIIter Tradingkyiv
510.000,0	n/a	2	2025	60-90 days after	CRYO Inter TradingKyiv
310.000,0	II/ a		2025	supply	CKTO IIIter Tradingkyiv
510.000,0	n/a	2	2025	60-90 days after	CRYO Inter TradingKyiv
310.000,0	II/ a		2023	supply	CKTO litter Tradingkylv
510.000,0	n/a	2	2025	60-90 days after	CRYO Inter TradingKyiv
310.000,0	II/ a	2	2023	supply	CKTO IIItei Trauliigkyiv
269.000,0	n/a	2	September 2024	n/a	PRILAT LLC, Kharkiv
269.000,0	n/a	2	September 2024	n/a	PRILAT LLC, Kharkiv
269.000,0	n/a	2	September 2024	n/a	PRILAT LLC, Kharkiv
269.000,0	n/a	2	September 2024	n/a	PRILAT LLC, Kharkiv
269.000,0	n/a	2	September 2024	n/a	PRILAT LLC, Kharkiv
550.000,0	n/a	1	Decemeber 2024	n/a	Caterpillar, Komatsu, Hyundai
					AB Metal Group
					AB Metal Group
					AB Metal Group
					AB Metal Group

					AB Metal Group
					AB Metal Group
					AB Metal Group
					Eneflex/ QB Jomsom/Propak
					EGS, Eneflex
					EGS, Eneflex
					SolarTurbimes
16.288,0	20/68 MW	1	15.09.2024	15.11.2024	АВВ
20.942,0	28/68 MW	1	15.09.2024	15.11.2024	ABB
89.587,0	20/68 MW	1	10.09.2024	15.11.2024	ABB, schneider electric
121.000,0	38/68 MW	1	15.09.2024	15.11.2024	ABB, schneider electric
182.431,0	10/68 MW	1	15.09.2024	15.11.2024	ABB, schneider electric
130.308,0	779/779 Gcal	1	01.09.2024	1.11.2024	Wilo
98.662,0	20/1406 Gcal	1	01.09.2024	1.11.2024	WILO SE, Grundfos
455.148,0	90/1406 Gcal	1	01.09.2024	1.11.2024	WILO SE, Grundfos
1.470.620,0	200/1406 Gcal	1	01.09.2024	15.10.2024	ТОВ «НВО «ЕКОСОФТ»
489.382,0	40/80 MW	1	01.09.2024	1.11.2024	GENERAL ENERGY
240.940,0	40/80 MW	1	01.09.2024	1.11.2024	GENERAL ENERGY, ABB
10.120,0	10/80 MW	1	01.09.2024	15.10.2024	GENERAL ENERGY, ABB

31.646,0	10/80 MW	1	01.09.2024	15.10.2024	ABB
27.158,0	10/80 MW	1	01.09.2024	15.10.2024	Hitachi Energy
6.981,0	5/61,6 MW	1	01.09.2024	15.10.2024	ТОВ«ЛТЕХКОМ»
68.877,0	150/313 Gcal	1	01.09.2024	15.10.2024	УКРНАСОСПРОМ
14.430,0	100/313 Gcal	1	01.09.2024	15.10.2024	TOB «ІВЦ «Європрилад» Україна
740.257,0	20/40 MW	1	01.09.2024	15.10.2024	PJSC"Zaporozhtransforma tor"
372.309,0	18/40 MW	1	01.09.2024	15.10.2024	Spetzpromarmatura
4.430,0	20/410 Gcal	1	01.09.2024	15.10.2024	Spetzpromarmatura
11.944,0	20/410 Gcal	1		September 2023	Spetzpromarmatura
58.064,0	50/410 Gcal	1	15.09.2024	15.11.2024	Spetzpromarmatura
17.059,0	40/410 Gcal	1	15.09.2024	15.11.2024	Spetzpromarmatura
10.471,0	35/410 Gcal	1	15.09.2024	15.11.2024	Spetzpromarmatura
16.421,0	25/410 Gcal	1	15.09.2024	15.11.2024	Spetzpromarmatura
50.113,0	20/410 Gcal	1		August 2023	Spetzpromarmatura
58.892,0	50/410 Gcal	1	15.09.2024	15.11.2024	Spetzpromarmatura
85.440,0	25/410 Gcal	1	15.09.2024	15.11.2024	Spetzpromarmatura
31.095,0	30/410 Gcal	1	15.09.2024	15.11.2024	Spetzpromarmatura
812.900,0	60/410 Gcal	1	15.09.2024	15.11.2024	Spetzpromarmatura

I.		ı	ı	1	
208.055,0	This equipment does not affect	2	6 (2024 year)	2 month after receiving	Compressors Internetional
4.288.000,0	output of 180	1	10 (2025 year)	3 month after	ASTOR, ZTR, GE
4.288.000,0	MW		10 (2025 year)	receiving	ASTOR, ZTR, GE
20.000.000,0	output of 50 MW	1	8 (2025 year)	20 (2025-2026 year)	UEM, Andritz
2.144.000,0	output of 150 MW	1	10 (2025 year)	3 month after receiving	ASTOR, ZTR, GE
184.120,0	This equipment does not affect	1	6 (2024 year)	2 after receiving equipment (2025	ASTOR, ZTR, GE
107.200,0	output of 44 MW	1	4 (2024 year)	1 month after receiving	ASTOR, ZTR, GE
			-		

1.483.106,0	output of 88 MW	1	10 (2025 year)	3 month after receiving	ASTOR
216.098,0	This equipment does not affect	2	6 (2024 year)	2 month after receiving	ABB, ALSTOM
19.645,0	This equipment does not affect	2	6 (2024 year)	2 month after receiving	ABB
88.404,0	This equipment does not affect	2	6 (2024 year)	2 month after receiving	ABB
29.560,0	This equipment does not affect	2	6 (2024 year)	2 month after receiving	ABB
1.483.106,0	output of 88 MW	1	10 (2025 year)	3 month after receiving	ASTOR
88.385,0	output of 132 MW	1	4 (2024 year)	1 month after receiving	ABB, ALSTOM
98.226,0	This equipment does not affect	1	4 (2024 year)	1 month after receiving	ASTOR, ZTR, GE, ABB
1.483.106,0	reserve	1	10 (2025 year)	3 month after receiving	ASTOR, ZTR, GE, ABB
58.936,0	This equipment does not affect	1	6 (2024 year)	2 month after receiving	ABB
1.557.692,0	output of 224,5 MW	1	6 (2025 year)	3 month after receiving	ASTOR, ZTR, GE, ABB
1.557.692,0	output of 224,5 MW	1	6-10 (2026 year)	3 month after receiving	ASTOR, ZTR, GE, ABB
1.557.692,0	output of 224,5 MW	1	6-10 (2026 year)	3 month after receiving	ASTOR, ZTR, GE, ABB
147.339,0	This equipment does not affect	1	4-10 (2025 year)	1 month after receiving	ASTOR, ZTR, GE, ABB
147.339,0	This equipment does not affect	1	4-10 (2025 year)	1 month after receiving	ASTOR, ZTR, GE, ABB
216.098,0	output of 224,5 MW	1	6 (2024 year)	2 month after receiving	ABB, ALSTOM
216.098,0	output of 224,5 MW	2	6-10 (2025 year)	2 month after receiving	ABB, ALSTOM
216.098,0	output of 224,5 MW	3	6-10 (2025 year)	2 month after receiving	ABB, ALSTOM
2.946,0	This equipment does not affect	1	4 (2024 year)	1 month after receiving	ABB, ALSTOM

2.946,0	This equipment does not affect	2	4 (2024 year)	1 month after receiving	ABB, ALSTOM
2.946,0	This equipment does not affect	2	10 (2025 year)	1 month after receiving	ABB, ALSTOM
2.946,0	This equipment does not affect	3	10 (2025 year)	1 month after receiving	ABB, ALSTOM
2.946,0	This equipment does not affect	1	4 (2024 year)	1 month after receiving	ABB, ALSTOM
2.946,0	This equipment does not affect	2	4 (2024 year)	1 month after receiving	ABB, ALSTOM
19.654,0	This equipment does not affect	1	6 (2024 year)	2 month after receiving	ABB, ALSTOM
19.654,0	This equipment does not affect	2	6 (2024 year)	2 month after receiving	ABB, ALSTOM
19.654,0	This equipment does not affect	2	6 (2024 year)	2 month after receiving	ABB, ALSTOM
19.654,0	This equipment does not affect	3	6 (2024 year)	2 month after receiving	ABB, ALSTOM
32.160,0	This equipment does not affect	1	4 (2024 year)	1 month after receiving	ABB
32.160,0	This equipment does not affect	2	4 (2024 year)	1 month after receiving	ABB
29.467,0	This equipment does not affect	1	2-4 (2024 year)	1 month after receiving	ABB
29.467,0	This equipment does not affect	2	2-4 (2024 year)	1month after receiving	ABB
29.467,0	This equipment does not affect	2	2-8 (2025 year)	1 month after receiving	ABB
29.467,0	This equipment does not affect	3	2-8 (2025 year)	1 month after receiving	ABB
595.588,0	This equipment does not affect	2	6 (2025 year)	2 month after receiving	Ukrsteelconstruction
595.588,0	This equipment does not affect	2	6 (2025 year)	2 month after receiving	Ukrsteelconstruction
27.000.000,0	This equipment does not affect	1			Ukrsteelconstruction
		1			Ukrsteelconstruction

	1 1			1 1	
		1			
		1			
		1			
		1			
		2			Ukrsteelconstruction
30.000.000,0	has been under reconstruction	2	18 (2025 year)	20 month after receiving	UEM
			18 (2025 year)	20 month after receiving	UEM
30.000.000,0	output of 120 MW	3	18 (2025 year)	20 month after receiving	UEM
			18 (2025 year)	20 month after receiving	UEM
30.000.000,0	output of 120 MW	3	18 (2025 year)	20 month after receiving	UEM
			18 (2025 year)	20 month after receiving	UEM
17.000.000,0	output of 120 MW	2	16 (2025 year)	18 month after receiving	UEM
17.000.000,0	output of 120 MW	2	16 (2025 year)	18 month after receiving	UEM
200.570,0	This equipment does not affect	1	6 (2024 year)	2 month after receiving	Elektrotexnik Corporation
1.964.525,0	This equipment does not affect	3	1 (2024 year)	This equipment does not require	Liebherr
30.000.000,0	output of 72MW	1	18 (2025 year)	20 month after receiving	UEM
		1	18 (2025 year)	20 month after receiving	UEM
30.000.000,0	output of 72MW	1	18 (2025 year)	20 month after receiving	UEM
		1	18 (2025 year)	20 month after receiving	UEM

5.000.000,0	2025	
5.000.000,0	2025	
4.400.000,0	2025	
4.400.000,0	2025	
4.400.000,0	2025	
3.600.000,0	2025	
3.600.000,0	2025	
1.800.000,0	2025	
2.200.000,0	2025	
2.200.000,0	2025	
1.800.000,0	2025	
1.800.000,0	2025	
1.800.000,0	2025	
3.600.000,0	4 quarter 2024	
4.500.000,0	4 quarter 2024	
480.000,0	4 quarter 2024	
539.694,0	4 quarter 2024	
35.310,0	4 quarter 2024	
203.322,0	4 quarter 2024	

161.136,0	4 quarter 2024
462.840,0	4 quarter 2024
119.664,0	4 quarter 2024
26.175,0	4 quarter 2024
35.515,2	4 quarter 2024
25.178,4	4 quarter 2024
195.000,0	4 quarter 2024
300.000,0	4 quarter 2024
510.000,0	4 quarter 2024
55.200,0	4 quarter 2024
41.400,0	4 quarter 2024
23.640,0	4 quarter 2024
24.600,8	4 quarter 2024
10.000,0	4 quarter 2024
11.000,0	4 quarter 2024
12.000,0	4 quarter 2024
140.000,0	4 quarter 2024
180.000,0	4 quarter 2024
250.000,0	4 quarter 2024

1	
24.750,0	4 quarter 2024
	4 quarter 2024
3.120.000,0	4 quarter 2024
1.500.000,0	4 quarter 2024
103.622,0	4 quarter 2024
246.310,0	4 quarter 2024
216.968,0	4 quarter 2024
247.390,0	4 quarter 2024
89.960,0	4 quarter 2024

313.682,0	4 quarter 2024
784.205,0	4 quarter 2024
27.665,0	4 quarter 2024
253.858,3	4 quarter 2024
87.954,0	4 quarter 2024
11.364,0	4 quarter 2024
172.730,0	4 quarter 2024
80.540,0	4 quarter 2024
2.531.200,0	4 quarter 2024
595.440,0	4 quarter 2024
372.150,0	4 quarter 2024
503.832,0	4 quarter 2024
376.731,0	4 quarter 2024
209.295,0	4 quarter 2024
209.295,0	4 quarter 2024
209.295,0	4 quarter 2024
379.710,0	4 quarter 2024
227.826,0	4 quarter 2024
230.544,0	4 quarter 2024

537.936,0			4 quarter 2024		
1.350.927,0		1	4 quarter 2024		
		1	4 quarter 2024		
		1	4 quarter 2024		
		1	4 quarter 2024		
		1	4 quarter 2024		
		1	4 quarter 2024		
3.600.000,0		1	2025		
1.170.000,0		1	4 quarter 2024		
3.600.000,0		1	2025		
3.000.000,0		1	4 quarter 2024		
2.400.000,0		1	4 quarter 2024		
6.000.000,0	10.4 MW	1	01.11.2024	01.11.2024	Jenbacher (or another manufacturer of similar
850.000,0	63 MBA	1	01.02.2025* (taking into account the transformer	01.02.2025* (taking into	PRIVATE JOINT STOCK COMPANY
48.000,0	105 MW (after the completion	1	01.11.2024	01.11.2024	TOB "DIMOIL", "AGRINOL" Company,
151.000,0	Ensuring the operation of	1	01.11.2024	01.11.2024	JSC Sumy Plant Nasosenergomash
19.000.000,0	31 MW	2	01.02.2025	01.02.2025	LLC "Mitsubishi Power Aero" (or another
14.000.000,0	60/220 MW	1	01.10.2024	01.10.2027	Siemens
14.000.000,0		45292	2025	2027	

670.000,0		45293	2025	2026	
870.000,0		45292	01.2025	01.06.2025	
570.000,0		45293	2025	2026	
140.000,0		45293	2025	2026	
120.000,0		45293	2025	2026	
1.954.031,5		1	2024		
273.239,2	230 tons/hour	1	15.10.2024	30.10.2024	Ukrainian manufacturer, foreign analogue
592.318,1	230 tons/hour	1	01.08.2024	20.10.2024	Ukrainian manufacturer, foreign analogue
628.984,7		1	01.08.2024	15.11.2024	Ukrainian manufacturer, foreign analogue
608.977,8	50 MW	1	15.11.2024	1.3.2025	Ukrainian Energy Machines, GE, Siemens
468.266,4	230 tons/hour	1	01.03.2025	30.05.2025	Ukrainian manufacturer, foreign analogue
1.660.369,2	120 МВт (2х60)	1	01.08.2024	01.01.2025	ПрАТ «Запоріжтрансформатор
376.436,4	120 МВт	1	01.08.2024	01.01.2025	
261.553,6	120 МВт	1	01.08.2024	01.01.2025	
178.173,7	120 МВт	1	01.08.2024	1.1.2025	
91.659,5	120 МВт	1	01.08.2024	01.01.2025	
81.475,1	120 МВт	1	01.08.2024	01.01.2025	
67.911,3	120 МВт	1	01.08.2024	01.01.2025	
44.363,8	120 МВт	1	01.08.2024	01.01.2025	

44.047,5	120 МВт	1	01.08.2024	01.01.2025	
35.998,7	120 МВт	1	01.08.2024	01.01.2025	
34.719,5	120 МВт	1	01.08.2024	01.01.2025	
15.267,6	120 МВт	1	01.08.2024	01.01.2025	
13.897,5	120 МВт	1	01.08.2024	01.01.2025	
12.093,9	120 МВт	1	01.08.2024	01.01.2025	
11.096,9	120 МВт	1	01.08.2024	01.01.2025	
10.415,9	120 МВт	1	01.08.2024	01.01.2025	
9.777,0	120 МВт	1	01.08.2024	01.01.2025	
9.165,9	120 МВт	1	01.08.2024	01.01.2025	
7.850,4	120 МВт	1	01.08.2024	01.01.2025	
4.514,3	120 МВт	1	01.08.2024	01.01.2025	
10.415,8	120 МВт	1	01.08.2024	01.01.2025	
353,2	120 МВт	1	01.08.2024	01.01.2025	

1	1	1	I	1	

Impact	Comments	Status of covering the need for equipment	Status of covering the need for equipment	Power unit number
13	14	15	16	17
Restoration of power unit operation capability		It is planned to receive humanitarian aid from a donor in	yes	block 5, 6
restoration of the design scheme of the distribution device of the		* The purchase of ATDCTN-200000 - 2 pcs. is carried out within the	yes	open switchgear-
restoration of the design scheme of the distribution device of the		Procurement is carried out within the framework of support from	yes	for filling oil- filled electrical
restoration of the design scheme of the distribution device of the		Procurement is carried out within the framework of support from	yes	open switchgear
restoration of the design scheme of the distribution device of the		Procurement is carried out within the framework of support from	yes	open switchgear
restoration of the design scheme of the distribution device of the		Procurement is carried out within the framework of support from	yes	open switchgear
restoration of the design scheme of the distribution device of the		Procurement is carried out within the framework of support from	yes	avtotransformer AT-A
ensuring reliability and maneuverability during start-up		The Ministry of Energy of Ukraine has developed a new form for	no	block 1-6
For power supply and switching of damaged equipment		The Ministry of Energy of Ukraine has developed a new form for	no	block 5,6
Restoration of power unit operation capability			no	block 2,3
restoration of this equipment ensures the operability of the		Procurement is carried out in accordance with the Request for	yes	open switchgear
restoration of this equipment ensures the operability of the		Procurement is carried out in accordance with the Request for	yes	block 1-6
restoration of this equipment ensures the operability of the		Procurement is carried out in accordance with the Request for	yes	block 1-6

restoration of this equipment	Procurement is carried out in		block 1-6
ensures the operability of the	accordance with the Request for	yes	DIOCK 1-6
restoration of this equipment	Procurement is carried out in		block 1.6
ensures the operability of the	accordance with the Request for	yes	block 1-6
restoration of this equipment	Procurement is carried out in		block 1.C
ensures the operability of the	accordance with the Request for	yes	block 1-6
restoration of this equipment	Procurement is carried out in	1/05	block 1-6
ensures the operability of the	accordance with the Request for	yes	DIOCK 1-6
restoration of this equipment	Procurement is carried out in	1/05	block 1-6
ensures the operability of the	accordance with the Request for	yes	DIOCK 1-6
restoration of this equipment	Procurement is carried out in	1/05	block 1 6
ensures the operability of the	accordance with the Request for	yes	block 1-6
restoration of this equipment	Procurement is carried out in	1/05	block 1-6
ensures the operability of the	accordance with the Request for	yes	DIOCK 1-0
restoration of this equipment	Procurement is carried out in	1/05	block 1-6
ensures the operability of the	accordance with the Request for	yes	DIOCK 1-6
to replace damaged power plant		no	block 4
equipment in order to stabilize		110	DIOCK 4
	The Ministry of Energy of Ukraine	no	block 1,3,4,6
	has developed a new form for		DIOCK 1,3,4,0
For power supply and switching of	Procurement is carried out within	VO5	block 4,5
damaged equipment	the framework of support from	yes	DIOCK 4,5
to replace damaged power plant	Procurement is carried out within	VO5	block 3, 4
equipment in order to stabilize	the framework of support from	yes	DIOCK 5, 4
to replace damaged power plant	Procurement is carried out within	VAS	block 4
equipment in order to stabilize	the framework of support from	yes	DIOCK 4
to replace damaged power plant		no	open
equipment in order to stabilize		110	switchgear-
to replace damaged power plant	Procurement is carried out within	VAS	for filling oil-
equipment in order to stabilize	the framework of support from	yes	filled electrical
to replace damaged power plant	Procurement is carried out within	VO5	for filling oil
equipment in order to stabilize	the framework of support from	yes	tanks on blocks
ensuring reliability and	Part of the procurement (1087900	no	block 3,4
maneuverability during start-up	euro) is carried out in accordance	no	DIUCK 3,4
protection of main and auxiliary	The Ministry of Energy of Ukraine	no	the main
equipment from atmospheric	has developed a new form for	no	building
protection of main and auxiliary	The Ministry of Energy of Ukraine	nc	the main
equipment from atmospheric	has developed a new form for	no	building

ensuring reliability and		Procurement is carried out within	VOS	block 3,4
maneuverability during start-up		the framework of support from	yes	DIOCK 3,4
to replace damaged power plant		The Ministry of Energy of Ukraine	no	block 3,6
equipment in order to stabilize		has developed a new form for	no	DIOCK 5,0
ensuring reliability and		The Ministry of Energy of Ukraine	no	block 4, 5
maneuverability during start-up		has developed a new form for	no	DIOCK 4, 5
restoration of this equipment		The Ministry of Energy of Ukraine	no	block 3,4
ensures the operability of the		has developed a new form for	110	DIOCK 3,4
restoration of this equipment		The Ministry of Energy of Ukraine	no	block 3,4
ensures the operability of the		has developed a new form for	110	DIOCK 3,4
restoration of this equipment		The Ministry of Energy of Ukraine	20	block 3,4
ensures the operability of the		has developed a new form for	no	DIOCK 5,4
restoration of this equipment		The Ministry of Energy of Ukraine	no	block 3,4
ensures the operability of the		has developed a new form for	no	DIOCK 5,4
restoration of this equipment		The Ministry of Energy of Ukraine	no	block 2.4
ensures the operability of the		has developed a new form for	no	block 3,4
restoration of this equipment		The Ministry of Energy of Ukraine	no	block 2,5
ensures the operability of the		has developed a new form for	no	DIOCK 2,5
The need to restore generating	the exact term of the works will	ESP USAID - in procurement	VOC	Block X
capacities to ensure the operation	depend on the number and	ESF OSAID - III procurement	yes	BIOCK A
The need to restore generating		ESP USAID - in procurement	VOC	Block X
capacities to ensure the operation		ESF OSAID - III procurement	yes	BIOCK X
The need to restore generating		ESP USAID - in procurement	VOC	Block X
capacities to ensure the operation		ESF OSAID - III procurement	yes	BIOCK X
Необхідність відновлення	Без автоматичної системи	заявка подана, торгів немає	no	Block X
системи керування турбіною на	керування турбіною Т-110/120-	заявка подана, торив немае	110	BIOCK X
The need to restore registration		ESP USAID - in procurement	VAS	Block X
and visual control of changes in		ESF OSAID - III procurement	yes	BIOCK X
Необхідність відновлення		заявка подана, торгів немає	no	Block X
працездатності технологічного		заявка подана, торив немае	110	BIOCK X
Necessity to restore the		request submitted, no bidding	no	Block X
performance of power unit No.2		request submitted, no bloding	no	BIOCK A
Necessity to restore the		ESP USAID - in procurement	VOS	Block X
performance of power unit No.2		Lor Obaid - in procurement	yes	DIUCK A
Necessity to restore the	Commissioning and safe operation	request submitted, no bidding	no	Block X
performance of power unit No.2	of the turbogenerator is	request submitted, no bidding	110	DIOCK A
Necessity to restore the	Without full restoration of the	request submitted, no bidding	no	Block X
performance of power unit No.2	local shields of the	request submitted, no bidding	110	DIOCK X

Necessity to restore the		request submitted, no bidding	no	Block X
performance of power unit No.2		request submitted, no blading	no	DIUCK A
The need to restore equipment	The equipment is needed to	ESP USAID - in procurement	yos.	Block X
for switching high-voltage	rebuild for this winter.	ESP OSAID - III procurement	yes	DIUCK A
The need to restore the	The equipment is needed to	ESP USAID - in procurement	V05	Block X
operability of metering,	rebuild for this winter.	ESP OSAID - III procurement	yes	DIUCK A
The need to restore a power	The equipment is needed to	ESP USAID - in procurement	V/05	Block X
transformer	rebuild for this winter.	ESP OSAID - III procurement	yes	DIUCK A
The need to restore equipment		UESF - in procurement	VOS	Block X
for the transmission and		OESF - III procurement	yes	BIOCK A
The need to restore power to the	It is necessary to initiate bidding	request submitted, no bidding	no	Block X
turbine generator field winding	for this equipment, as the turbine	request submitted, no blading	no	DIUCK A
The need to restore equipment		UESF - in procurement	s	Block X
for the transmission and		OESF - III procurement	yes	DIUCK A
The need to restore equipment		UESF - in procurement	Vos	Block X
for the transmission and		OESF - III procurement	yes	DIUCK A
The need to restore equipment	The equipment is needed to	ESP USAID - in procurement	VOS	Block X
for the transmission and	rebuild for this winter.	ESF OSAID - III procurement	yes	BIOCK A
The need to protect electrical	The equipment is needed to	ESP USAID - in procurement	VOS	Block X
equipment from high voltage	rebuild for this winter.	ESF OSAID - III procurement	yes	BIOCK A
The need to restore equipment	The equipment is needed to	ESP USAID - in procurement	VOS	Block X
for the transmission and	rebuild for this winter.	ESF OSAID - III procurement	yes	BIOCK A
The need to restore equipment	The equipment is needed to	ESP USAID - in procurement	Vos	Block X
for switching high-voltage	rebuild for this winter.	ESF OSAID - III procurement	yes	BIOCK A
The need to restore equipment	The equipment is needed to	ESP USAID - in procurement	VAS	Block X
for switching high-voltage	rebuild for this winter.	LSF OSAID - III procurement	yes	BIOCK A
The need to restore equipment	The equipment is needed to	ESP USAID - in procurement	VAS	Block X
for the transmission and	rebuild for this winter.	LSF OSAID - III procurement	yes	BIOCK A
The restoration of lifting		request submitted, no bidding	no	Block X
equipment is necessary to speed		request submitted, no bluding	110	BIOCK A
The need to restore the main	The equipment is needed to	UESF - in procurement	Vos	Block X
building	rebuild for this winter.	OESF - III procurement	yes	BIOCK A
The need to restore the building	The equipment is needed to	UESF - in procurement	VOS	Block X
of the main building	rebuild for this winter.	·	yes	DIUCK A
необхідність відновлення	Термін поставки підтверджуємо.	UESF - SR wasn't submitted to the	no	Block X
електрообладнання	терина поставки підтверджуємо.	Ministry. надіслано лист від	110	DIOCK A
Необхідність відновлення	Термін поставки підтверджуємо	UESF - SR wasn't submitted to the	no	Block X
системи керування турбіною на	термін поставки підтверджуємо	Ministry. надіслано лист від	110	DIOCK A

Необхідність відновлення	Tanada sa atangga si stangga sa aya	UESF - SR wasn't submitted to the		Block X
системи керування турбіною на	Термін поставки підтверджуємо	Ministry. надіслано лист від	no	BIOCK X
Необхідність відновлення	Tanadia na ananana ni anana na anana	UESF - SR wasn't submitted to the		Dia ala V
системи керування турбіною на	Термін поставки підтверджуємо	Ministry. надіслано лист від	no	Block X
Необхідність відновлення	T	UESF - SR wasn't submitted to the		DII. V
системи керування турбіною на	Термін поставки підтверджуємо	Ministry. надіслано лист від	no	Block X
Необхідність відновлення	Tanadia and and and and and and and and and an	UESF - SR wasn't submitted to the		Block X
системи керування турбіною на	Термін поставки підтверджуємо	Ministry. надіслано лист від	no	BIOCK X
необхідність відновлення	Обладнання необхідно на 4	UESF - SR wasn't submitted to the	20	Block X
пошкоджених силових кабелів	квартал 2024 року.	Ministry. Запит буде поданий до	no	BIOCK X
Відновлення працездатності	Tanadia na anananani na ananananan	UESF - SR wasn't submitted to the		Dia ala V
енергоблоку	Термін поставки підтверджуємо	Ministry. Запит буде поданий до	no	Block X
Відновлення працездатності	Tanadia	UESF - SR wasn't submitted to the		Dia ala V
енергоблоку	Термін поставки підтверджуємо	Ministry. Запит буде поданий до	no	Block X
необхідність відновлення	Обладнання необхідно на 4	UESF - SR wasn't submitted to the		Dia ala V
обладнання другого джерела	квартал 2024 року.	Ministry. надіслано лист від	no	Block X
необхідність відновлення	Обладнання необхідно на 4	UESF - SR wasn't submitted to the		Dia ala V
обладнання другого джерела	квартал 2024 року.	Ministry. надіслано лист від	no	Block X
242 MW of generating capacity,		ECDLICAID in management		D.K
electricity and heat supply for		ESP USAID - in procurement	yes	P,K
150 MW of generating capacity,		FCD LICAID in management		N.
electricity and heat supply for 120		ESP USAID - in procurement	yes	N
Ensuring the transmission of		ECD LICAID in management		>-
electricity between lines with		ESP USAID - in procurement	yes	n\a
Ensuring the transmission of		CCD LICAID in progurement		2/2
electricity between lines with		ESP USAID - in procurement	yes	n\a
Ensuring the transmission of		ESP USAID - in procurement		2/2
electricity between lines with		ESP OSAID - III procurement	yes	n\a
Ensuring the transmission of		CCD LICAID in progurement		2/2
electricity between lines with		ESP USAID - in procurement	yes	n\a
300 MW of generating capacity,		ECD LICAID in management		_
electricity and heat supply for 232		ESP USAID - in procurement	yes	F
438 MW of generating capacity,		ECDLICAID in procurement	NGS.	VII
electricity and heat supply for 350		ESP USAID - in procurement	yes	X,H
120 MW of generating capacity,		ESDIISAID in prosurement	VCC	U
electricity and heat supply for 99		ESP USAID - in procurement	yes	
Ensuring the transmission of		ESP USAID - in procurement	Voc	n\a
electricity between lines with		ESP OSAID - III procurement	yes	II\a

Possibility to operate the station				l I
through powering its own		ESP USAID - in procurement	yes	P,K,N
160 MW of generating capacity,		ECD LICATO :		14/
electricity and heat supply for 128		ESP USAID - in procurement	yes	W
Restoration of power unit		ECD LICAID in management		D K N
operation capability		ESP USAID - in procurement	yes	P,K,N
Possibility to operate the station		CCD LICAID in progurament	ves	D K N
through powering its own		ESP USAID - in procurement	yes	P,K,N
329 MW of generating capacity,	The necessity could be	Not covered	no	Р
electricity and heat supply for 263	reconsidered after the cleaning of	Not covered	no	r
290 MW of generating capacity,	The necessity could be	Not covered	no	X,H
electricity and heat supply for 232	reconsidered after the cleaning of	Not covered	110	۸,۱۱
(#DE018)	The necessity could be	Not covered	no	v,c
(#DE018)	reconsidered after the cleaning of	Not covered	110	V,C
438 MW of generating capacity,	The necessity could be	Not covered	no	E
electricity and heat supply for 350	reconsidered after the cleaning of	Not covered	110	
(#DE020)	The necessity could be	Not covered	no	E
(#DE020)	reconsidered after the cleaning of	Not covered	110	
6 MW of generating capacity	UESF - request submitted (#55/6-	UESF - in procurement	yes	Х,Н
0 WW or generating capacity	192/2024 dated 14.06.2024)			7,11
12 MW of generating capacity	UESF - request submitted (№ 55/6-	UESF - reservation of funds was	yes	x
12 WW or generating capacity	223/2024 dated 03.07.2024)	requested on 02/08/2024, not	ye3	
25 MW	UESF - request submitted (#71/6-	UESF-Approved by MoE on	no I	n\a
25 10100	151/2024 dated 26.06.2024)	12/08/2024, the reservation of	110	II (d
(#DR003)	UESF - request submitted (#70/6-	UESF - support request approved	yes	n\a
("ENOUS)	118/2024 dated 26.06.2024)	by Ministry of Energy. Awaiting for	, c5	11 (0
(#DR003)	UESF - request submitted (#70/6-	UESF - support request approved	yes	n\a
(#BN000)	118/2024 dated 26.06.2024)	by Ministry of Energy. Awaiting for		(۵
3 MW of generating capacity	UESF - request submitted (#70/6-	UESF - Rejected by MoE on	no	n\a
5 mm or generating capacity	122/2024 dated 03.07.2024)	02/08/2024		(
4 MW of generating capacity	UESF - request submitted (#71/6-	UESF - Rejected by MoE ON	no	n\a
	157/2024 dated 03.07.2024)	02/08/2024		(
Ensuring the transmission of	Energy Community UESF - in	UESF - in procurement	no	n\a
electricity between lines with	procurement	ozor iii procurement		(
125 MW of generating capacity,	Energy Community UESF - in	UESF - in procurement	no	n\a
electricity and heat supply for 100	procurement			/~
289 MW of generating capacity,	Energy Community UESF - in	UESF - in procurement	no	n\a
electricity and heat supply for 230	procurement			/~

160 MW of generating capacity,	UESF - request submitted	Approved by the Ministry of Energy		
electricity and heat supply for 130	(#83/611 dated 29.05.2024)	on 07.06.2024. Funds reservation	no	S
190 MW of generating capacity,	UESF - request submitted	Approved by the Ministry of Energy		
electricity and heat supply for 150	(#83/611 dated 29.05.2024)	on 07.06.2024. Funds reservation	no	Р
Contributes to the restoration of	UESF - request submitted	Approved by the Ministry of Energy		
300 MW of power capacity	(#83/611 dated 29.05.2024)	on 07.06.2024. Funds reservation	no	
Contributes to the restoration of	UESF - request submitted	Approved by the Ministry of Energy		
438 MW of power capacity	(#83/611 dated 29.05.2024)	on 07.06.2024. Funds reservation	no	V
Contributes to the restoration of	UESF - request submitted	Approved by the Ministry of Energy		E V N
320 MW of power capacity	(#83/611 dated 29.05.2024)	on 07.06.2024. Funds reservation	no	F,V,N
Acceleration of recovery	UESF - request submitted	Awaiting for the Ministry's of		VII
operations of damaged power	(#83/714 dated 25.06.2024)	Energy consideration under the	no	х,н
Acceleration of recovery	UESF - request submitted	Awaiting for the Ministry's of		1.347
operations of damaged power	(#83/714 dated 25.06.2024)	Energy consideration under the	no	I,W
Acceleration of recovery	UESF - request submitted	Awaiting for the Ministry's of		EV/N
operations of damaged power	(#83/714 dated 25.06.2024)	Energy consideration under the	no	F,V,N
Acceleration of recovery	UESF - request submitted	Awaiting for the Ministry's of		1.347
operations of damaged power	(#83/714 dated 25.06.2024)	Energy consideration under the	no	I,W
Acceleration of recovery	UESF - request submitted	UESF - Approved by the Ministry of		VII
operations	(#01/433 dated 12.06.2024)	Energy on 01.07.2024. Funds	no	Х,Н
Acceleration of recovery	UESF - request submitted	UESF - Approved by the Ministry of	20	n/a
operations	(#01/433 dated 12.06.2024)	Energy on 01.07.2024. Funds	no	n/a
Equipment, materials for repairing	UESF - requests submitted	Two requests were submitted for	No.	11.0.5
damaged units and infrastructure.	(#83/816 dated 30.07.2024,	the amount of EUR 37,8 mln	yes	U,O,S
Services for repairing damaged		Not covered	20	P,K
units and infrastructure.		Not covered	no	Ρ,Κ
Equipment, materials for repairing	UESF - requests submitted	Two requests were submitted for	VOC	EEVNC
damaged units and infrastructure.	(#83/816 dated 30.07.2024,	the amount of EUR 11,2 mln	yes	F,E,V,N,C
Services for repairing damaged		Not covered	20	I,W
units and infrastructure.		Not covered	no	1,00
Equipment, materials for repairing	UESF - request submitted	UESF - support request was	VOC	X,H
damaged units and infrastructure.	(#83/828 dated 01.08.2024)	approved by MoE ON 02/08/2024,	yes	Λ,Π
Services for repairing damaged		Not covered	no	P,K
units and infrastructure.		Not covered	no	r,K
Equipment, materials, and	Loans or grant financing is	Not covered	no	U,O,S
services for repairing damaged	required	Not covered	110	0,0,3
Equipment, materials, and	Loans or grant financing is	Not covered	no	n∖a
services for repairing damaged	required	NOT COVELED	110	πια

i i			
New construction 112 MW	Not covered	no	n∖a
(#DE041)	Not covered	no	n∖a
(#DE041)	Not covered	no	n∖a
(#DE041)	Not covered	no	n\a
(#DE041)	Not covered	no	F,E,V,N,C
The provision of temporary protective structures will provide	Not covered	no	F,E,V,N,C
The provision of temporary protective structures will provide	Not covered	no	I,W
The provision of temporary protective structures will provide	Not covered	no	I,W
The provision of temporary protective structures will provide	Not covered	no	Х,Н
The provision of temporary protective structures will provide	Not covered	no	P,K
The provision of temporary protective structures will provide	Not covered	no	P,K
The provision of temporary protective structures will provide	Not covered	no	U,O,S
The provision of temporary protective structures will provide	Not covered	no	U,O,S
The provision of temporary protective structures will provide	Not covered	no	U,O,S
To supply compressed air for repairs	Not covered	no	P,K
To supply compressed air for repairs	Not covered	no	F,E,V,N,C
To supply compressed air for repairs	Not covered	no	I,W
To supply compressed air for repairs	Not covered	no	U,O,S
estore damaged equipment and	Not covered		P,K

Restore damaged equipment and	Not some d		
thus ensure repair of the main	Not covered	no	Х,Н
Restore damaged equipment and	Net severed		ΓV
thus ensure repair of the main	Not covered	no	F,V
Restore damaged equipment and	Not covered	200	I,W
thus ensure repair of the main	Not covered	no	1, VV
Restore damaged equipment and	Not covered	no	U,O,S
thus ensure repair of the main	Not covered	110	0,0,3
To ensure the production of	Not covered	no	P,K
hydrogen and thus the operation	Not covered	110	F,N
To ensure the production of	Not covered	no	Х,Н
hydrogen and thus the operation	Not covered	110	۸,۱۱
To ensure the production of	Not covered	no	F,E,V,N,C
hydrogen and thus the operation	Not covered	110	1,1,0,10,0
To ensure the production of	Not covered	no	l,W
hydrogen and thus the operation	Not covered	110	1, 00
To ensure the production of	Not covered	no	U,O,S
hydrogen and thus the operation	Not covered	110	0,0,3
To ensure a rapid recovery from	Not covered	no	P,K
shelling	Not covered	110	1,10
To ensure a rapid recovery from	Not covered	no	Х,Н
shelling	Not covered	110	7,11
To ensure a rapid recovery from	Not covered	no	F,E,V,N,C
shelling	Not covered	110	1,2,7,14,0
To ensure a rapid recovery from	Not covered	no	l,W
shelling	TVOC COVETEG	110	1,00
To ensure a rapid recovery from	Not covered	no	P,K
shelling	not covered		. ,
Acceleration of recovery	Not covered	no	
operations	not covered	1.0	
Provision of natural gas to		no	
households		1.0	
Provision of natural gas to		no	
households		1.0	
Provision of natural gas to		no	
households		1.0	
Provision of natural gas to		no	
households			

Provision of natural gas to				
households			no	
Provision of natural gas to			20	
households			no	
Provision of natural gas to			no	
households			110	
Commodity gas quality assurance			no	
and			110	
Maintaining and ramping-up gas			no	
production			110	
Maintaining and ramping-up gas			no	
production			no	
Maintaining and ramping-up gas			no	
production			110	
Ensuring reliable heat supply and	560 566, 00 Euros, excl. VAT		no	
power generation	(68 MBт/ 779 Gcal)		110	
Ensuring reliable heat supply and			no	
power generation			110	
Ensuring reliable heat supply and			no	
power generation			110	
Ensuring reliable heat supply and			no	
power generation			110	
Ensuring reliable heat supply and			no	
power generation			110	
Ensuring reliable heat supply			no	
Ensuring reliable heat supply	2 024 430,00 Euros, excl. VAT (4x1406 Gcal)		no	
Ensuring reliable heat supply			no	
Ensuring reliable heat supply			no	
Ensuring reliable heat supply and	799 246,00 Euros, excl. VAT		n-	
power generation	(80 МВт)		no	
Ensuring reliable heat supply and			no	
power generation			no	
Ensuring reliable heat supply and			no	
power generation			110	

Ensuring reliable heat supply and				l
power generation			no	
Ensuring reliable heat supply and				
power generation			no	
Ensuring reliable heat supply and	90 288,00 Euros, excl. VAT		no	
power generation	(80 МВт)		no	
Ensuring reliable heat supply			no	
Ensuring reliable heat supply			no	
Ensuring reliable heat supply and				
power generation			no	
Ensuring reliable heat supply and				
power generation			no	
Ensuring reliable heat supply			no	
Ensuring reliable heat supply		received. installed: Pumping group	yes	
Ensuring rendere near suppry		40-200-7,5 2 pcs with control	yes	
Ensuring reliable heat supply	2 207 338,00 Euros, excl. VAT		no	
5 11 7	(40 MBт/410 Gcal)			
Ensuring reliable heat supply			no	
Ensuring reliable heat supply			no	
Ensuring reliable heat supply			no	
Ensuring reliable heat supply		received. installed: Pumping group 50-200-18,5 3 pcs with control	yes	
Ensuring reliable heat supply			no	
Ensuring reliable heat supply			no	
Ensuring reliable heat supply			no	
Ensuring reliable heat supply			no	
Provision of natural gas to			no	
households, Storage of gas from			110	

Provision of natural gas to	1		1	
households, Storage of gas from			no	
Provision of natural gas to				
households, Storage of gas from			no	
Provision of natural gas to				
households, Storage of gas from			no	
Provision of natural gas to				
households, Storage of gas from			no	
Provision of natural gas to				
households, Storage of gas from			no	
Provision of natural gas to				
households, Storage of gas from			no	
Provision of natural gas to				
households, Storage of gas from			no	
Provision of natural gas to				
households, Storage of gas from			no	
Provision of natural gas to				
households, Storage of gas from			no	
Provision of natural gas to				
households, Storage of gas from			no	
Provision of natural gas to			no	
households, Storage of gas from			no	
Provision of natural gas to			no	
households, Storage of gas from			no	
Provision of natural gas to			no	
households, Storage of gas from			110	
This equipment is necessary to	This equipment is critically needed	not procured	yes	
ensure the vital activity of the	for the autumn-winter period	not procured	yes	
to ensure output of 180 MW	This equipment is critically needed	Submitted to USAID for	yes	
to ensure output of 100 WW	for the autumn-winter period	procurement	yes	
to ensure output of 50 MW	To be determined after	not procured	yes	
to chaire output of 50 WW	equipment diagnostics		yes	
to ensure output of 150 MW	This equipment is critically needed	Submitted to USAID for	yes	
·	for the autumn-winter period	procurement	,,,,	
This equipment is necessary to	reserve	not procured	yes	
ensure the vital activity of the		<u> </u>	,	
to ensure output of 44 MW	This equipment is critically needed	Submitted to USAID for	yes	
	for the autumn-winter period	procurement	1 , ==	

This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is ritically needed for the autumn-winter period This equipment is ritically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is ritically needed for the autumn-winter period This equipment is ritically needed for the autumn-winter period This equipment is ritically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the incompany of the autumn-winter period This equipment is necessary to ensure output of 224,5 MW inspection and overhaul inspection and overhaul inspection and overhaul roll ensure the vital activity of the for the autumn-winter period This equipment is necessary to ensure the vital activity of the ensure the vital activity of the for the autumn-winter period This equipment is necessary to for the autumn-winter period This equipment is necessary to for the autumn-winter period This equipment is necessary to for the autumn-winter period This equipment is necessary to for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter pe	to ensure output of 88 MW	This equipment is critically needed	The purchase was funded by an		
for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the This equipment is necessary to to ensure output of 132 MW This equipment is necessary to ensure the vital activity of the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the To ensure output of 224,5 MW This equipment is necessary to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the This equipment is critically needed for the autumn-winter period This equipment is recisally needed for the autumn-winter period This equipment is recisally needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autum	to ensure output of 88 MW	for the autumn-winter period	IBRD Loan Agreement No. 9284-UA	yes	
This equipment is necessary to ensure output of 132 MW This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the to ensure output of 132 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the This equipment is necessary to for the autumn-winter period This equipment is necessary to for the autumn-winter period This equipment is necessary to for the autumn-winter period This equipment is necessary to for the autumn-winter period This equipment is necessary to for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically ne		This equipment is critically needed	Submitted to USAID for		
This equipment is necessary to ensure the vital activity of the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period an unforeseen emergency This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW Inspection and repair to ensure output of 224,5 MW Inspection and overhaul This equipment is critically needed for the autumn-winter period to ensure the vital activity of the This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW Inspection and overhaul This equipment is necessary to ensure the vital activity of the This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW Inspection and overhaul This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW Inspection and overhaul This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW Inspection and overhaul to ensure output of 224,5 MW Inspection and overhaul to ensure output of 224,5 MW Inspection and overhaul to ensure output of 224,5 MW Inspection and overhaul to ensure output of 224,5 MW Inspection ensure output of 224,5 MW Inspection is critically needed for the autumn-winter period to ensure output of 224,5 MW Inspection is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for		for the autumn-winter period	procurement	yes	
This equipment is necessary to ensure the vital activity of the autumn-winter period of the autumn-winter period of the autumn-winter period of the autumn-winter period to ensure output of 132 MW This equipment is critically needed for the autumn-winter period of the autumn-winter period of the autumn-winter period for the autumn-winter period of the autumn-winter period for the autumn-winter period for the autumn-winter period for the autumn-winter period of the autumn-winter period for the autumn-winter period of the autumn-winter period for the autumn-winte		This equipment is critically needed	Submitted to USAID for		
This equipment is necessary to ensure the vital activity of the onsure output of 132 MW This equipment is necessary to ensure output of 132 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period To ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period			procurement	yes	
ensure the vital activity of the This equipment is necessary to ensure output of 132 MW This equipment is rottically needed for the autumn-winter period This equipment is rottically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is rottically needed for the autumn-winter period This equipment is rottically needed for the autumn-winter period This equipment is rottically needed for the autumn-winter period This equipment is necessary to ensure output of 224,5 MW This equipment is rottically needed for the autumn-winter period This equipment is necessary to ensure output of 224,5 MW This equipment is necessary to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the This equipment is necessary to to ensure output of 224,5 MW This equipment is rottically needed for the autumn-winter period This equipment is rottically needed for the autumn-winter period This equipment is rottically needed for the autumn-winter period This equipment is rottically needed for the autumn-winter period This equipment is rottically needed for the autumn-winter period This equipment is rottically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is rottically needed for the autumn-winter period This equipment is rottically needed for the autumn-winter period This equipment is rottically needed for the autumn-winte	This equipment is necessary to	·			
This equipment is necessary to ensure the vital activity of the to ensure output of 32 MW This equipment is critically needed for the autumn-winter period to ensure output of 132 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is recessary to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure the vital activity of the This equipment is recessary to to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment i			Procurement with USAID funds	yes	
to ensure output of 132 MW This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the equipment is critically needed for the autumn-winter period This equipment is necessary to an unforeseen emergency This equipment is necessary to this equipment is necessary to ensure the vital activity of the ensure output of 224,5 MW This equipment is necessary to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure output of 224,5 MW This equipment is necessary to ensure output of 224,5 MW This equipment is necessary to ensure output of 224,5 MW This equipment is necessary to ensure output of 224,5 MW This equipment is recessary to to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-wi	·	·			
to ensure output of 88 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is necessary to ensure output of 224,5 MW This equipment is recitically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is necessary to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically	ensure the vital activity of the	for the autumn-winter period	Procurement with USAID funds	yes	
to ensure output of 132 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically		·	The purchase was funded by an		
to ensure output of 132 MW This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the equipment is recessary to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the aut	to ensure output of 88 MW			yes	
This equipment is necessary to ensure output of 224,5 MW To ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure the vital activity of the This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure the vital activity of the This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 244,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to the autumn-winter period This equipment is critically needed for the autumn-winter period		·			
This equipment is necessary to ensure the vital activity of the equipment is necessary to an unforeseen emergency This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure output of 224,5 MW This equipment is recessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is recessary to ensure the vital activity of the to ensure the vital activity of the to ensure output of 224,5 MW This equipment is recessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is recessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is recessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to the autumn-winter period This equipment is nec	to ensure output of 132 MW		Procurement with USAID funds	yes	
ensure the vital activity of the equipment in case of the event of an unforeseen emergency This equipment is necessary to ensure output of 224,5 MW This equipment is rotitically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is rotitically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is rotitically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the for the autumn-winter period This equipment is necessary to ensure the vital activity of the for the autumn-winter period This equipment is rotitically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for th	This equipment is necessary to	-			
equipment in case of the event of an unforeseen emergency This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period			Procurement with USAID funds	yes	
This equipment is necessary to ensure output of 224,5 MW inspection and repair not procured yes This equipment is necessary to ensure output of 224,5 MW inspection and repair not procured yes This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW inspection and overhaul not procured yes This equipment is necessary to ensure the vital activity of the This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is recessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period	equipment in case of the event of				
This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is recitically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period	1 1 1	reserve	not procured	yes	
to ensure output of 224,5 MW inspection and repair restoration of the autumn-winter period rothe autum		This equipment is critically needed			
to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is received for the autumn-winter period This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is received for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period	ensure the vital activity of the	for the autumn-winter period	Procurement with USAID funds	yes	
to ensure output of 224,5 MW inspection and overhaul not procured yes This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW To ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period	to ensure output of 224,5 MW	inspection and repair	not procured	yes	
This equipment is necessary to ensure the vital activity of the This equipment is necessary to ensure the vital activity of the To ensure output of 224,5 MW To ensure output of 224,5 MW To ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period To ensure output of 224,5 MW To ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period	to ensure output of 224,5 MW		Procurement with USAID funds	yes	
ensure the vital activity of the This equipment is necessary to ensure output of 224,5 MW to ensure output of 224,5 MW to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period	to ensure output of 224,5 MW	inspection and overhaul	not procured	yes	
This equipment is necessary to ensure the vital activity of the to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period	1		Procurement with USAID funds	yes	
ensure the vital activity of the to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is restoration This equipment is necessary to This equipment is critically needed for the autumn-winter period This equipment is necessary to This equipment is critically needed for the autumn-winter period This equipment is necessary to This equipment is critically needed for the autumn-winter period This equipment is restoration This equipment is critically needed for the autumn-winter period	·	·			
to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to This equipment is critically needed for the autumn-winter period This equipment is necessary to This equipment is critically needed for the autumn-winter period This equipment is necessary to This equipment is critically needed for the autumn-winter period This equipment is necessary to This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period	1		Procurement with USAID funds	yes	
to ensure output of 224,5 MW to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to This equipment is critically needed This equipment is necessary to This equipment is critically needed		·			
to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is critically needed for the autumn-winter period This equipment is necessary to This equipment is critically needed for the autumn-winter period This equipment is necessary to This equipment is critically needed restoration This equipment is critically needed restoration This equipment is critically needed restoration	to ensure output of 224,5 MW		Procurement with USAID funds	yes	
to ensure output of 224,5 MW for the autumn-winter period to ensure output of 224,5 MW This equipment is restoration for the autumn-winter period for the autumn-winter period This equipment is necessary to This equipment is critically needed restoration to ensure output of 224,5 MW This equipment is necessary to This equipment is critically needed restoration to ensure output of 224,5 MW This equipment is critically needed restoration to ensure output of 224,5 MW This equipment is critically needed restoration to ensure output of 224,5 MW This equipment is necessary to the autumn-winter period to ensure output of 224,5 MW This equipment is necessary to the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is necessary to the autumn-winter period to ensure output of 224,5 MW This equipment is necessary to the autumn-winter period to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of 224,5 MW This equipment is critically needed to ensure output of					
to ensure output of 224,5 MW This equipment is critically needed for the autumn-winter period This equipment is necessary to This equipment is critically needed restoration This equipment is restoration This equipment is critically needed restoration This equipment is critically needed restoration	to ensure output of 224,5 MW		Procurement with USAID funds	yes	
This equipment is necessary to This equipment is necessary to This equipment is necessary to This equipment is critically needed This equipment is necessary to This equipment is critically needed This equipment is necessary to This equipment is critically needed		·			
This equipment is necessary to This equipment is critically needed restoration ves	to ensure output of 224,5 MW		Procurement with USAID funds	yes	
restoration ves	This equipment is necessary to	·			
			restoration	yes	

This equipment is necessary to	This equipment is critically needed	Due compare and with LICAID founds		
ensure the vital activity of the	for the autumn-winter period	Procurement with USAID funds	yes	
This equipment is necessary to	This equipment is critically needed	not procured	Vos	
ensure the vital activity of the	for the autumn-winter period	not procured	yes	
This equipment is necessary to	This equipment is critically needed	not procured	yes	
ensure the vital activity of the	for the autumn-winter period	not procured	yes	
This equipment is necessary to	This equipment is critically needed	restoration	yes	
ensure the vital activity of the	for the autumn-winter period	restoration	yes	
This equipment is necessary to	This equipment is critically needed	not procured	yes	
ensure the vital activity of the	for the autumn-winter period	not procured	yes	
This equipment is necessary to	This equipment is critically needed	Procurement with USAID funds	yes	
ensure output to the grid	for the autumn-winter period	Trocurement with OSAID funds	yes	
This equipment is necessary to	This equipment is critically needed	Procurement with USAID funds	VAS	
ensure output to the grid	for the autumn-winter period	Procurement with OSAID fullus	yes	
This equipment is necessary to	This equipment is critically needed	Procurement with USAID funds	Vec	
ensure output to the grid	for the autumn-winter period	Frocurement with OSAID fullus	yes	
This equipment is necessary to	This equipment is critically needed	Procurement with USAID funds	yes	
ensure output to the grid	for the autumn-winter period	Trocurement with OSAID funds	yes	
This equipment is necessary to	This equipment is critically needed	restoration	yes	
ensure the vital activity of the	for the autumn-winter period	restoration	yes	
This equipment is necessary to	This equipment is critically needed	not procured	yes	
ensure the vital activity of the	for the autumn-winter period	not procured	yes	
This equipment is necessary to	This equipment is critically needed	Procurement with USAID funds	yes	
ensure the vital activity of the	for the autumn-winter period	Trocurement with OSAID funds	yes	
This equipment is necessary to	This equipment is critically needed	Procurement with USAID funds	yes	
ensure the vital activity of the	for the autumn-winter period	Trocurement with OSAID funds	yes	
This equipment is necessary to	This equipment is critically needed	Procurement with USAID funds	yes	
ensure the vital activity of the	for the autumn-winter period	Trocurement with OSAID funds	yes	
This equipment is necessary to	This equipment is critically needed	Procurement with USAID funds	yes	
ensure the vital activity of the	for the autumn-winter period	Trocurement with OSAID funds	yes	
This equipment is necessary to	This equipment is critically needed	repair	yes	
ensure the vital activity of the	for the autumn-winter period	repair	yes	
This equipment is necessary to	This equipment is critically needed	repair	yes	
ensure the vital activity of the	for the autumn-winter period	·	yes	
This equipment is necessary for		Procurement with EBRD, EIB loan	yes	
the safe operation of the plant		funds, Loan Agreement No. 47947	yes	
		Procurement with EBRD, EIB loan	yes	
		funds, Loan Agreement No. 47947	,	

		Procurement with EBRD, EIB loan	yes	
		funds, Loan Agreement No. 47947	funds, Loan Agreement No. 47947	
		Procurement with EBRD, EIB loan		
		funds, Loan Agreement No. 47947	yes	
		Procurement with EBRD, EIB loan	VOS	
		funds, Loan Agreement No. 47947	yes	
		Procurement with EBRD, EIB loan		
		funds, Loan Agreement No. 47947	yes	
		Procurement with EBRD, EIB loan		
		funds, Loan Agreement No. 47947	yes	
output of 120 MW		needs to be diagnosed	yes	
		needs to be diagnosed	yes	
output of 120 MW		not procured	yes	
		not procured	yes	
output of 120 MW		not procured	yes	
		not procured	yes	
output of 120 MW		needs to be diagnosed	yes	
output of 120 MW		needs to be diagnosed	yes	
This equipment is necessary to ensure the vital activity of the	This equipment provides direct current to the station	Procurement with USAID funds	yes	
This equipment is necessary to ensure the vital activity of the	Requested through the UESF - support request was approved,	Procurement with USAID funds	yes	
to ensure output of 72MW		not procured	yes	
		not procured	yes	
to ensure output of 72MW		not procured	yes	
		not procured	yes	

Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID; Reserve	Funding agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	

Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	

Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - USAID;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	

Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	
Donor - KfW;	Procurement agreed	yes	

	Виконуються проектні роботи до 12.2024		no	BlockA, BlockB, BlockC
136 MW of generating capacity, electricity and heat supply for	UESF: Support request was approved by MoE on 12.04.2024.	UESF: non-allolcated due to the lack of available funding	no	Block A
supply of electricity and heat for	installation is necessary to provide	in procurement/rubber assistance	yes	
generating capacity. Supply of 31.0 MW of generating capacity,	damaged as a result of rocket fire. The introduction of a gas turbine	in procurement/rubber assistance ESP USAID - in procurement/UESF -	-	
Reservation of 40 MW of	Replacement of the feed pump	ESP USAID - in procurement/UESF -	yes	
(after the completion of	product line item was rejected by	assistance from Lithuania/or any	yes	
105 MW of generating capacity		ESP USAID - in procurement/rubber		
218,000 people, provision of	meeting dated 06/21/2024 of the	confirmed by EnCS ON 18/07/2024.	yes	Block A
Supply of electricity and heat for	According to the Minutes of the	UESF reservation of funds		Dio ele A
10.4 MW of generating capacity. Supply of electricity and heat for	It is proposed to implement the power output of the gas piston	ESP USAID - in procurement/UESF - in procurement/rubber assistance	yes	
	Donor - USAID;	USAID Energy Security Project	yes	Northern Region,
	Donor - TBD;	Negotiating funding	no	Eastern region, Substation Q
	Donor - TBD;	Negotiating funding	no	Region,
				Substation S Northern
	Donor - TBD;	Negotiating funding	no	Western region,
	Donor - TBD;	Negotiating funding	no	Eastern Region, Substation R
	Donor - TBD;	Negotiating funding	no	Northern Region,
	Donor - TBD;	Negotiating funding	no	Northern Region,
	Donor - TBD;	Negotiating funding	no	Northern Region,
	Donor - TBD;	Negotiating funding	no	Southern Region,
	Donor - TBD;	Negotiating funding	no	Southern Region,
	Donor - TBD;	Negotiating funding	no	Eastern Region, Substation A
	Donor - KfW;	Procurement agreed	yes	

	Виконуються проектні роботи до 10.2024		no	Block B
	Проектні роботи завершені		no	Block A, Block B, Block C
	Виконуються проектні роботи до 11.2024		no	Block A, Block B, Block C
			no	Block A, Block B, Block C
			no	Block A, Block B, Block C
			no	Block A
plus 45 MW of generating capacity, electricity supply for 36			no	Блок (Котел №10 + Турбіна
plus 45 MW of generating capacity, electricity supply for 36			no	Блок (Котел №11 + Турбіна
			no	
plus 45 MW of generating capacity, electricity supply for 36			no	Блок (Котел №11 + Турбіна
plus 45 MW of generating capacity, electricity supply for 36			no	Резервний Котел. Може
120 МВТ для виробництва електроенергії та тепла для 60	UESF - Support request was approved by MoE on 05/07/2024.	Розміщено потребу на платформах AID ENERGY, ENERGY	no	
120 МВТ для виробництва електроенергії та тепла для 60	UESF - Support request was approved by MoE on 05/07/2024.	Розміщено потребу на платформах AID ENERGY, ENERGY	no	
120 МВТ для виробництва електроенергії та тепла для 60	UESF - Support request was approved by MoE on 05/07/2024.	Розміщено потребу на платформах AID ENERGY, ENERGY	no	
120 МВТ для виробництва електроенергії та тепла для 60	UESF - Support request was approved by MoE on 05/07/2024.	Розміщено потребу на платформах AID ENERGY, ENERGY	no	
120 МВТ для виробництва електроенергії та тепла для 60	, , , , , , , , , , , , , , , , , , , ,	Розміщено потребу на платформах AID ENERGY, ENERGY	no	
120 МВТ для виробництва електроенергії та тепла для 60		Розміщено потребу на платформах AID ENERGY, ENERGY	no	
120 МВТ для виробництва електроенергії та тепла для 60	UESF - Support request was approved by MoE on 05/07/2024.	Розміщено потребу на платформах AID ENERGY, ENERGY	no	
120 МВТ для виробництва електроенергії та тепла для 60	UESF - Support request was approved by MoE on 05/07/2024.	Розміщено потребу на платформах AID ENERGY, ENERGY	no	

I	1		i i	ı
120 МВТ для виробництва		Розміщено потребу на	no	
електроенергії та тепла для 60		платформах AID ENERGY, ENERGY		
120 МВТ для виробництва	UESF - Support request was	Розміщено потребу на	no	
електроенергії та тепла для 60	approved by MoE on 05/07/2024.	платформах AID ENERGY, ENERGY	110	
120 МВТ для виробництва	UESF - Support request was	Розміщено потребу на	no	
електроенергії та тепла для 60	approved by MoE on 05/07/2024.	платформах AID ENERGY, ENERGY	110	
120 МВТ для виробництва		Розміщено потребу на	no	
електроенергії та тепла для 60		платформах AID ENERGY, ENERGY	110	
120 МВТ для виробництва		Розміщено потребу на	no	
електроенергії та тепла для 60		платформах AID ENERGY, ENERGY	110	
120 МВТ для виробництва		Розміщено потребу на	20	
електроенергії та тепла для 60		платформах AID ENERGY, ENERGY	no	
120 МВТ для виробництва	UESF - Support request was	Розміщено потребу на	20	
електроенергії та тепла для 60	approved by MoE on 05/07/2024.	платформах AID ENERGY, ENERGY	no	
120 МВТ для виробництва	UESF - Support request was	Розміщено потребу на		
електроенергії та тепла для 60	approved by MoE on 05/07/2024.	платформах AID ENERGY, ENERGY	no	
120 MBT для виробництва	UESF - Support request was	Розміщено потребу на		
електроенергії та тепла для 60	approved by MoE on 05/07/2024.	платформах AID ENERGY, ENERGY	no	
120 MBT для виробництва		Розміщено потребу на		
електроенергії та тепла для 60		платформах AID ENERGY, ENERGY	no	
120 MBT для виробництва		Розміщено потребу на		
електроенергії та тепла для 60		платформах AID ENERGY, ENERGY	no	
120 MBT для виробництва		Розміщено потребу на		
електроенергії та тепла для 60		платформах AID ENERGY, ENERGY	no	
120 MBT для виробництва	UESF - Support request was	Розміщено потребу на		
електроенергії та тепла для 60	approved by MoE on 05/07/2024.	платформах AID ENERGY, ENERGY	no	
120 MBT для виробництва		Розміщено потребу на		
електроенергії та тепла для 60		платформах AID ENERGY, ENERGY	no	
				I

I I	I	ı
	·	